Proofs Without Words


Book Description




Proofs Without Words II


Book Description

Like its predecessor, Proofs without Words, this book is a collection of pictures or diagrams that help the reader see why a particular mathematical statement may be true and how one could begin to go about proving it. While in some proofs without words an equation or two may appear to help guide that process, the emphasis is clearly on providing visual clues to stimulate mathematical thought. The proofs in this collection are arranged by topic into five chapters: geometry and algebra; trigonometry, calculus and analytic geometry; inequalities; integer sums; and sequences and series. Teachers will find that many of the proofs in this collection are well suited for classroom discussion and for helping students to think visually in mathematics.




Proofs Without Words III


Book Description

Proofs without words (PWWs) are figures or diagrams that help the reader see why a particular mathematical statement is true, and how one might begin to formally prove it true. PWWs are not new, many date back to classical Greece, ancient China, and medieval Europe and the Middle East. PWWs have been regular features of the MAA journals Mathematics Magazine and The College Mathematics Journal for many years, and the MAA published the collections of PWWs Proofs Without Words: Exercises in Visual Thinking in 1993 and Proofs Without Words II: More Exercises in Visual Thinking in 2000. This book is the third such collection of PWWs.




Math Made Visual


Book Description

The object of this book is to show how visualization techniques may be employed to produce pictures that have interest for the creation, communication and teaching of mathematics. Mathematical drawings related to proofs have been produced since antiquity in China, Arabia, Greece and India but only in the last thirty years has there been a growing interest in so-called 'proofs without words.' In this book the authors show that behind most of the pictures 'proving' mathematical relations are some well-understood methods. The first part of the book consists of twenty short chapters, each one describing a method to visualize some mathematical idea (a proof, a concept, an operation,...) and several applications to concrete cases. Following this the book examines general pedagogical considerations concerning the development of visual thinking, practical approaches for making visualizations in the classroom and a discussion of the role that hands-on material plays in this process.




How to Prove It


Book Description

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.




Book of Proof


Book Description

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.




Proofs that Really Count


Book Description

Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.




Proofs from THE BOOK


Book Description

According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.




Proof and the Art of Mathematics


Book Description

How to write mathematical proofs, shown in fully-worked out examples. This is a companion volume Joel Hamkins's Proof and the Art of Mathematics, providing fully worked-out solutions to all of the odd-numbered exercises as well as a few of the even-numbered exercises. In many cases, the solutions go beyond the exercise question itself to the natural extensions of the ideas, helping readers learn how to approach a mathematical investigation. As Hamkins asks, "Once you have solved a problem, why not push the ideas harder to see what further you can prove with them?" These solutions offer readers examples of how to write a mathematical proofs. The mathematical development of this text follows the main book, with the same chapter topics in the same order, and all theorem and exercise numbers in this text refer to the corresponding statements of the main text.




Math with Bad Drawings


Book Description

A hilarious reeducation in mathematics-full of joy, jokes, and stick figures-that sheds light on the countless practical and wonderful ways that math structures and shapes our world. In Math With Bad Drawings, Ben Orlin reveals to us what math actually is; its myriad uses, its strange symbols, and the wild leaps of logic and faith that define the usually impenetrable work of the mathematician. Truth and knowledge come in multiple forms: colorful drawings, encouraging jokes, and the stories and insights of an empathetic teacher who believes that math should belong to everyone. Orlin shows us how to think like a mathematician by teaching us a brand-new game of tic-tac-toe, how to understand an economic crises by rolling a pair of dice, and the mathematical headache that ensues when attempting to build a spherical Death Star. Every discussion in the book is illustrated with Orlin's trademark "bad drawings," which convey his message and insights with perfect pitch and clarity. With 24 chapters covering topics from the electoral college to human genetics to the reasons not to trust statistics, Math with Bad Drawings is a life-changing book for the math-estranged and math-enamored alike.