Properties of Mercury Cadmium Telluride


Book Description




Mercury Cadmium Telluride


Book Description

Mercury cadmium telluride (MCT) is the third most well-regarded semiconductor after silicon and gallium arsenide and is the material of choice for use in infrared sensing and imaging. The reason for this is that MCT can be ‘tuned’ to the desired IR wavelength by varying the cadmium concentration. Mercury Cadmium Telluride: Growth, Properties and Applications provides both an introduction for newcomers, and a comprehensive review of this fascinating material. Part One discusses the history and current status of both bulk and epitaxial growth techniques, Part Two is concerned with the wide range of properties of MCT, and Part Three covers the various device types that have been developed using MCT. Each chapter opens with some historical background and theory before presenting current research. Coverage includes: Bulk growth and properties of MCT and CdZnTe for MCT epitaxial growth Liquid phase epitaxy (LPE) growth Metal-organic vapour phase epitaxy (MOVPE) Molecular beam epitaxy (MBE) Alternative substrates Mechanical, thermal and optical properties of MCT Defects, diffusion, doping and annealing Dry device processing Photoconductive and photovoltaic detectors Avalanche photodiode detectors Room-temperature IR detectors




Mercury Cadmium Telluride


Book Description

Mercury cadmium telluride (MCT) is the third most well-regarded semiconductor after silicon and gallium arsenide and is the material of choice for use in infrared sensing and imaging. The reason for this is that MCT can be ‘tuned’ to the desired IR wavelength by varying the cadmium concentration. Mercury Cadmium Telluride: Growth, Properties and Applications provides both an introduction for newcomers, and a comprehensive review of this fascinating material. Part One discusses the history and current status of both bulk and epitaxial growth techniques, Part Two is concerned with the wide range of properties of MCT, and Part Three covers the various device types that have been developed using MCT. Each chapter opens with some historical background and theory before presenting current research. Coverage includes: Bulk growth and properties of MCT and CdZnTe for MCT epitaxial growth Liquid phase epitaxy (LPE) growth Metal-organic vapour phase epitaxy (MOVPE) Molecular beam epitaxy (MBE) Alternative substrates Mechanical, thermal and optical properties of MCT Defects, diffusion, doping and annealing Dry device processing Photoconductive and photovoltaic detectors Avalanche photodiode detectors Room-temperature IR detectors




Properties of Narrow Gap Cadmium-based Compounds


Book Description

This highly structured volume contains sections on growth and device aspects of mercury cadmium telluride (MCT).










Properties of Mercury-Cadmium-Telluride Solid Solutions


Book Description

Measurements of the partial pressures in the mercury-cadmium-tellurium system are indicated. The thermodynamic analysis of this system is briefly sketched. References to detailed accounts of these results are cited. There now exist sufficient data that this system is to a large extent thermodynamically characterized. Moreover, a thermodynamic model has been established that allows a quantitative reproduction of essentially all of what appears to be the reliable phase diagram, partial pressure, and general thermodynamic data. (Author).










Mercury Cadmium Telluride Imagers


Book Description

In two parts, this book describes the evolution of mercury cadmium telluride (HgCdTe) imager structures based upon published patents and patent applications. The first part covers monolithic arrays, and the second part describes hybrid arrays. Each part has 5 chapters, with each document placed in chronological order, with the documents with the earliest priority placed first. Focus has been directed at the steps of manufacturing and structures of imagers. There is an index at the end of the book containing the patent number, the name of the applicant and the date of publication of each cited document. This monograph will serve as a useful summary of the patents and patent applications in the field of mercury cadmium telluride imagers.