Protein-based Engineered Nanostructures


Book Description

This book is devoted to the engineering of protein-based nanostructures and nanomaterials. One key challenge in nanobiotechnology is to be able to exploit the natural repertoire of protein structures and functions to build materials with defined properties at the nanoscale using “bottom-up” strategies. This book addresses in an integrated manner all the critical aspects that need to be understood and considered to design the next generation of nano-bio assemblies. The book covers first the fundamentals of the design and features of the protein building blocks and their self-assembly illustrating some of the most relevant examples of nanostructural design. Finally, the book contains a section dedicated to demonstrated applications of these novel bioinspired nanostructures in different fields from hybrid nanomaterials to regenerative medicine. This book provides a comprehensive updated review of this rapidly evolving field.




Protein-nanoparticle Co-engineering


Book Description

Direct cytoplasmic delivery of gene editing nucleases such CRISPR/Cas9 systems and therapeutic proteins provides enormous opportunities in curing human genetic diseases, and assist research in basic cell biology. One approach to attain such a goal is through engineering nanotechnological tools to mimic naturally existing intra- and extracellular protein delivery/transport systems. Nature builds transport systems for proteins and other biomolecules through evolution-derived sophisticated molecular engineering. Inspired by such natural assemblies, I employed molecular engineering approaches to fabricate self-assembled nanostructures to use as intracellular protein delivery tools. Briefly, proteins and gold nanoparticles were co-engineered to carry complementary electrostatic recognition elements. When these materials were mixed together, they formed highly sophisticated, multi-layered, and hierarchical self-assembled nanostructures of few hundred-nanometer size. These structures carried a large number of engineered proteins, got fused to cell membrane upon incubation, and delivered the encapsulated protein content directly into cell cytoplasm. Using this technology, we delivered a wide range of proteins, and CRISPR/Cas9-ribonucleoprotein that resulted high efficient gene editing.




Co-engineering Proteins and Nanoparticles for Fundamental Study and Delivery Applications


Book Description

Engineered nanoparticles provide a powerful scaffold for interfacing with proteins. The nanoparticle surface can be tailored to present recognition elements, providing surface complementarity to interact with protein surfaces. In this thesis, I have explored both the fundamental and the applied aspects of this interaction. On the fundamental side, I have co-engineered the nanoparticles and the proteins to generate robust dyads with strong binding affinity even at high salt concentration. Fluorescence titrations and docking studies were carried out to quantify the binding properties of the nanoparticles and proteins. Those studies revealed the prospect of tuning the affinity between the nanoparticles and proteins by co-engineering. On the application side, I have employed nanoparticle-protein interaction to fabricate self-assembled nanostructures to be used as intracellular protein delivery tools. In the first segment, nanoparticles and proteins were assembled to form nanoparticle stabilized capsules (NPSCs) for nuclear trafficking of proteins. The first non-peptide synthetic nuclear localization signal based on boronate was discovered, as well, using NPSC delivery platform. In the second segment, proteins and nanoparticles were co-engineered to self-assemble into hierarchical multi-layered nanostructures. These nanostructures were employed to deliver encapsulated proteins into cell cytosol, establishing a general strategy for protein delivery. Using this technology, I have delivered CRISPR/Cas9-ribonucleoprotein that resulted in highly efficient gene editing. Further, I have created an integrated nanotechnology/biology approach to engineer macrophages in vitro, thus, greatly enhancing their ability to phagocytose tumor cells, providing a new immunotherapeutic strategy for cancer therapy.




Nanostructures for the Engineering of Cells, Tissues and Organs


Book Description

Nanostructures for the Engineering of Cells: Tissues and Organs showcases recent advances in pharmaceutical nanotechnology, with particular emphasis on tissue engineering, organ and cell applications. The book provides an up-to-date overview of organ targeting and cell targeting using nanotechnology. In addition, tissue engineering applications, such as skin regeneration are also discussed. Written by a diverse range of international academics, this book is a valuable research resource for researchers working in the biomaterials, medical and pharmaceutical industries. Explains how nanomaterials regulate different cell behavior and function as a carrier for different biomolecules Shows how nanobiomaterials and nanobiodevices are used in a range of treatment areas, such as skin tissue, wound healing and bone regeneration Discusses nanomaterial preparation strategies for pharmaceutical application and regenerative medicine




Protein Self-Assembly


Book Description

This volume explores experimental and computational approaches to measuring the most widely studied protein assemblies, including condensed liquid phases, aggregates, and crystals. The chapters in this book are organized into three parts: Part One looks at the techniques used to measure protein-protein interactions and equilibrium protein phases in dilute and concentrated protein solutions; Part Two describes methods to measure kinetics of aggregation and to characterize the assembled state; and Part Three details several different computational approaches that are currently used to help researchers understand protein self-assembly. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Thorough and cutting-edge, Protein Self-Assembly: Methods and Protocols is a valuable resource for researchers who are interested in learning more about this developing field.




Carbohydrate Nanotechnology


Book Description

Introducing the emerging field carbohydrate nanostructures, this book will be a unique resource for interested researchers to learn a range of methods of applying the field to their own work. Greater access, as well as greater collaboration, to this new interdisciplinary field is intended for both synthetic carbohydrate chemists and researchers in nanoscience related fields. It covers: the main types of nanostructures presently under investigation for modification by carbohydrates, including nanoparticles, nanorods, magnetic particles, dendrimers, nanoporous, and surface confined structures overview and introduction to the field of carbohydrate nanotechnology, and especially its applications to its biological systems Provides a unique resource for researchers to learn about the techniques used to characterize the physical and biological properties of carbohydrate-modified nanostructures




Engineered Nanostructures for Therapeutics and Biomedical Applications


Book Description

Engineered Nanostructures for Therapeutics and Biomedical Applications offers a single reference for a diverse biomedical readership to learn about the application of nanotechnology in biomedicine and biomedical engineering, from past developments to current research and future prospects. This book sets out a broad selection of biomedical and therapeutic applications for nanostructures, including bioimaging, nanorobotics, orthopedics, and tissue engineering, offering a useful, multidisciplinary approach. Each chapter discusses challenges faced in each discipline, including limiting factors, biocompatibility, and toxicity, thus enabling the reader to make informed decisions in their research.This book is a comprehensive, broad overview of the role and significance of nanomaterials and their composites that also includes discussions of key aspects in the field of biomedicine. It will be of significant interest to academics and researchers in materials science and engineering, biomedicine and biomedical engineering, chemical engineering, pharmaceutics, bioimaging, and nanorobotics. Provides a broad overview of the many applications of nanomaterials and nanotechnology in biomedicine and engineering Offers a multidisciplinary approach that will appeal to a diverse readership, including those in biomedical engineering, materials science, biomedicine, and pharmaceutics Includes challenges faced and limiting factors for each application, allowing readers to make an informed decision when using nanomaterials in their research




Virus-Based Nanomaterials and Nanostructures


Book Description

A virus is considered a nanoscale organic material that can infect and replicate only inside the living cells of other organisms, ranging from animals and plants to microorganisms, including bacteria and archaea. The structure of viruses consists of two main parts: the genetic material from either DNA or RNA that carries genetic information, and a protein coat, called the capsid, which surrounds and protects the genetic material. By inserting the gene encoding functional proteins into the viral genome, the functional proteins can be genetically displayed on the protein coat to form bioengineered viruses. Therefore, viruses can be considered biological nanoparticles with genetically tunable surface chemistry and can serve as models for developing virus-like nanoparticles and even nanostructures. Via this process of viral display, bioengineered viruses can be mass-produced with lower cost and potentially used for energy and biomedical applications. This book highlights the recent developments and future directions of virus-based nanomaterials and nanostructures. The virus-based biomimetic materials formulated using innovative ideas were characterized for the applications of biosensors and nanocarriers. The research contributions and trends on virus-based materials covering energy harvesting devices to tissue regeneration in the last two decades are discussed.




Textbook of Nanoscience and Nanotechnology


Book Description

This book is meant to serve as a textbook for beginners in the field of nanoscience and nanotechnology. It can also be used as additional reading in this multifaceted area. It covers the entire spectrum of nanoscience and technology: introduction, terminology, historical perspectives of this domain of science, unique and widely differing properties, advances in the various synthesis, consolidation and characterization techniques, applications of nanoscience and technology and emerging materials and technologies.




DNA Engineered Noble Metal Nanoparticles


Book Description

There is a growing interest in the use of nanoparticles modified with DNAs, viruses, peptides and proteins for the rational design of nanostructured functional materials and their use in biosensor applications. The challenge is to control the organization of biomolecules on nanoparticles while retaining their biological activity as potential chemical and gene therapeutics. These noble metal nanoparticles/biomolecules conjugates have specific properties and therefore they are attractive materials for nanotechnology in biochemistry and medicine. In this book, the author review work performed dealing with the DNA structure and functionalities, interactions between DNA, noble metal nanoparticles, surface active agents, solvents and other additives. Particular attention is given to how the DNA's chain length and the DNA conformation affect the interaction and structure of the nanoconjugates and nanostructures that are formed. Also discussed are the recent advances in the preparation, characterization, and applications of noble metal nanoparticles that are conjugated with DNA aptamers and oligomers. The advantages and disadvantages of functionalized nanoparticles through various detection modes are highlighted, including colorimetry, fluorescence, electrochemistry, SPR, and, mass spectrometry for the detection of small molecules and biomolecules. The functionalized noble metal nanoparticles are selective and sensitive for the analytes, showing their great potential in biosensing. Furthermore, this book reviews recent progress in the area of DNA-noble metal nanoparticles based artificial nanostructures, that is, the preparation, collective properties, and applications of various DNA-based nanostructures are also described.