Protein Engineering of Targeted Cancer Therapies


Book Description

Protective antigen (PA). the pore-forming component of anthrax toxin, has emerged as a platform for the development of cancer therapies because of its versatility and robust ability to translocate proteins into a cell's cytosol. More recently, development of new techniques for modifying PA is enabling it to be retargeted to receptors of interest via fusion with existing protein binders. There is a vast library of potential binders for PA based on natural or novel protein scaffolds generated by the field of protein engineering. This has allowed new approaches for tumor cells to be targeted for cytosolic delivery of toxins as a therapeutic strategy. In our work, we sought to leverage the anti-tumor properties of an antibody, Elv3, to retarget PA to epidermal growth factor receptor (EGFR). This PA construct was shown to be capable of translocating a recently discovered protease, Ras and RapI Specific Protease (RRSP), which cleaves and inactivates the signal effector, Ras, found in the cytosol. We demonstrated that when Ras is inhibited in this manner, downstream growth signaling through pERK is ablated and health of a pancreatic cancer cell line (AsPC-l) is affected. Our results suggest that this retargeted PA, rnPA-Elv3, efficiently translocates cytotoxic material into EGFR-positive tumor cells and thus presents a possible avenue for development of a potent therapeutic. Using the same approach, we also took another previously engineered antibody, sm3e and expressed it as a fusion to PA to confer specificity to carcinoembryonic antigen (CEA). Though CEA is not typically internalized, we demonstrated that this retargeted PA (mPA-sm3e) retained the property of endocytosis and translocation and was able to deliver toxins to inhibit proliferation of AsPC-1 tumor cells. Finally, the retargeted PA variants, mPA-Elv3 and mPA-sm3e, were further characterized for tumor growth inhibition using mouse models. Nude mice were treated with the engineered PA variants against EGFR and CEA to test delivery of toxins into the cells of subcutaneous tumors. Initial results were promising, and future work should be aimed at additional studies confirming this work in mouse models. Our work has demonstrated that protein engineering can be used to retarget PA against tumor cells with positive results. We believe that the modularity and versatility of this retargeting strategy holds great potential in the design of anti-cancer therapeutics.




Protein Engineering for Cancer Therapy


Book Description

The immunosuppressive effects of CD4+CD25+ regulatory T cells (Tregs) interfere with anti-tumor immune responses in cancer patients. In the first part of this work, we present a novel class of engineered Interleukin-2 (IL-2) analogues that antagonize the IL-2 receptor, for inhibiting Treg suppression. These antagonists are engineered for high affinity to the IL-2 receptor a subunit and low affinity to either the [beta] or [gamma] subunit, resulting in a signaling-deficient IL-2 analogue that sequesters the IL-2 receptor a subunit from wild type IL-2. Using this design, human and mouse IL-2 antagonists were generated with inhibition constants ranging from 200 pM to 5 nM in vitro. Genetic fusions with IgG2a Fc enhanced serum half-life up to 30 hours. In order to study the effects of IL-2 antagonism, Fc fragments with disrupted effector functions were used. Fc-antagonist fusions bound to but could not deplete peripheral Tregs. They downregulated CD25 on Tregs, but could not perturb Treg function in a syngenic tumor model, presumably due to the high sensitivity of the IL-2 receptor and a high threshold for antagonism in vivo. In the second part of this work, we present a novel multi-agent protein-based system for targeted siRNA delivery that provides potential advantages over other nanoparticle- and proteinbased delivery vehicles. In the first agent, the double stranded RNA binding domain (dsRBD) of human protein kinase R is used as an siRNA carrier, in fusion proteins that target epidermal growth factor receptor (EGFR). Targeted dsRBD proteins deliver large amounts of siRNA to endosomal compartments in an EGFR expressing cell line, but efficient gene silencing is limited by endosomal escape. The use of a second agent that contains the cholesterol dependent cytolysin, perfringolysin 0, enhances endosomal escape of siRNA. Targeted delivery of perfringolysin 0 induces gene silencing in a dose-dependent and EGFR-dependent manner. However, cytotoxicity of the cytolysin creates a narrow therapeutic window. Multiepitopic EGFR binders that induce EGFR clustering are explored as tools for enhancing gene silencing efficiency. Interestingly, they not only enhance gene silencing potency but also protect against toxicity from EGFR-targeted cytolysins, thus significantly widening the therapeutic window of this method.




Frontiers of Engineering


Book Description

This volume presents papers on the topics covered at the National Academy of Engineering's 2016 US Frontiers of Engineering Symposium. Every year the symposium brings together 100 outstanding young leaders in engineering to share their cutting-edge research and innovations in selected areas. The 2016 symposium was held September 19-21 at the Arnold and Mabel Beckman Center in Irvine, California. The intent of this book is to convey the excitement of this unique meeting and to highlight innovative developments in engineering research and technical work.




Engineering All-in-one Protein-based Nanoparticles for Targeted Cancer Therapies


Book Description

Actualmente, las terapias convencionales contra el cáncer están lejos de ser ideales en cuanto a eficacia. Los fármacos actuales, formados por pequeños compuestos químicos se distribuyen indistintamente por todo el organismo, generando elevada toxicidad sistémica y dando lugar a efectos secundarios en tejidos sanos. En este contexto, la nanomedicina es una disciplina emergente que ofrece alternativas prometedoras para el desarrollo de terapias innovadoras y mejoradas contra el cáncer. Siendo materiales especialmente versátiles, las proteínas recombinantes están ganando mucho interés en el área de la biomedicina, con más de 400 fármacos recombinantes aprobados por agencias médicas. Las nanopartículas modulares y multifuncionales con naturaleza proteica son grandes candidatos para la entrega de fármacos ya que presentan gran estabilidad, biocompatibilidad y biodegradabilidad en el torrente sanguíneo. A la hora de diseñar sistemas para la administración de fármacos, el tamaño es una de las características más relevantes. Partículas dentro de la nanoescala (alrededor de los ̃8 - 100 nm) poseen una mayor estabilidad ya que pueden escapar de la filtración renal y por tanto tienen un mayor tiempo de circulación y mejor biodistribución (comparado con los compuestos químicos de menor tamaño). Por eso en nuestro grupo se ha desarrollado un principio nanoarquitectónico para el desarrollo de ensamblajes proteicos comprendidos en la nanoescala. Este principio se fundamenta en el uso de péptidos terminales catiónicos, para la oligomerización de monómeros en nanopartículas auto-ensambladas. Estas nanoestructuras proteicas modulares pueden ser empleadas como vehículos dirigidos a células si el péptido catiónico situado en el extremo N-terminal es además un ligando especifico de tumor. Sin embargo, la conjugación química de estos vehículos a un fármaco convencional conlleva riesgos debido a posibles liberaciones del mismo y posteriores efectos secundarios. Por todo ello, el principal objetivo de esta tesis ha sido explorar la aplicabilidad de este principio para el desarrollo de nanomedicinas proteicas multifuncionales y libres de vehículos adicionales. Este propósito se ha llevado a cabo mediante el diseño racional de novo de proteínas intrínsecamente citotóxicas como entidades terapéuticas para desarrollar fármacos antitumorales proteicos dirigidos a tumor. A partir de ahora, a raíz de los prometedores resultados discutidos en esta tesis, consideramos que es necesario seguir estudiando en profundidad la potencial aplicación de esta plataforma proteica multifuncional para el tratamiento de muchas otras enfermedades.




Targeted Cancer Therapy in Biomedical Engineering


Book Description

This book highlights the role of Biomedical Engineering (BME) used in diagnosis (e.g., body scanners) and treatment (radiation therapy and minimal access surgery in order to prevent various diseases). In recent years, an important progress has been made in the expansion of biomedical microdevices which has a major role in diagnosis and therapy of cancer. When fighting cancer, efficacy and speed are of the utmost importance. A recently developed microfluidic chip has enabled a breakthrough in testing the efficacy of specialized cancer drugs. Effective cancer-targeting therapies will require both passive and active targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes. This book discusses the advancements and innovations in the field of BME that improve the diagnosis and treatment of cancer. This book is focused on bioengineering approaches to improve targeted delivery for cancer therapeutics, which include particles, targeting moieties, and stimuli-responsive drug release mechanisms. This book is a useful resource for students, researchers, and professionals in BME and medicine.







Optimizing the Enzyme/prodrug Axis of Suicide Gene Therapy Using Protein Engineering Strategies


Book Description

The unifying goal of cancer therapy is to selectively eradicate cancer cells while sparing normal tissue from damage. As many current anticancer therapies lack specificity and cause unwanted side effects there is an unmet medical need for the development of clinical strategies able to overcome these obstacles. Suicide gene therapy (SGT) is an anticancer strategy with promise to reach this goal. Nevertheless, limitations such as poor prodrug activation and suicide enzyme immunogenicity hinder its applicability in a clinical setting. The work herein describes efforts to overcome these limitations.




Targeted Cancer Therapy Using Nanoparticles and Antibody Fragments


Book Description

Cancer is caused by an uncontrolled cell division, forming a tumor capable of metastasis. Cancer is the second leading cause of death worldwide. Conventional treatments kill healthy cells, causing side effects. Recently, nanomaterials are explored due to properties such as as- nano-size, high loading, and ligands,Äô attachment for a selective delivery. Apart from normal body cells, cancer cells express many receptors in excess, which serve as ,Äòtargets,Äô for attacking the cells. Various ligands like proteins, peptides, polysaccharides can be attached to nanoparticles to allow proper and specific reach to the tumor. Such nanoparticles go to their desired site and stick onto the receptors, taken inside the cells by various methods. Antibodies are natural proteins that bind to foreign substances and remove them. IgG being the most explored antibody, suffers from many disadvantages such as non-specificity for required antigen, limited binding sites, low tumor penetration. Hence many researchers experimented by removing and adjusting the binding sites, using only the binding sites, enhancing the valency of naturally available IgG. It gave many benefits such as enhanced penetration, reduced immunogenicity, better delivery of drugs with fewer side effects. Continuing advancements in the field of protein engineering will help scientists to come up with better solutions. The properties allow easy surface interaction and entry, achieve better biodistribution, and reduce the amount of drug required. Targeting is based on Paul Ehrlich,Äôs ,Äòmagic bullet, ,Äòwhere the therapeutic moiety has two parts-one to identify the target and the second to eliminate it. This concept is revised to incorporate a third component, a carrier. Many nanocarriers can be used to target cancer cells containing ligands to identify malignant cells. Approaches to targeting are passive, active and physical targeting. Many such nanoparticles are in clinical trials and can be a better solution to cancer therapy.




Antibody-Drug Conjugates


Book Description

Providing practical and proven solutions for antibody-drug conjugate (ADC) drug discovery success in oncology, this book helps readers improve the drug safety and therapeutic efficacy of ADCs to kill targeted tumor cells. • Discusses the basics, drug delivery strategies, pharmacology and toxicology, and regulatory approval strategies • Covers the conduct and design of oncology clinical trials and the use of ADCs for tumor imaging • Includes case studies of ADCs in oncology drug development • Features contributions from highly-regarded experts on the frontlines of ADC research and development




Protein Engineering


Book Description

A one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology Protein Engineering: Tools and Applications is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications. The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book: Covers technologies and methodologies used in protein engineering Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology Presents cutting edge advances in the continuously evolving field of protein engineering Written for students and professionals of bioengineering, biotechnology, biochemistry, Protein Engineering: Tools and Applications offers an essential resource to the design strategies in protein engineering and reviews recent applications.