Protein Folding Protocols


Book Description

Covering experiment and theory, bioinformatics approaches, and state-of-the-art simulation protocols for better sampling of the conformational space, this volume describes a broad range of techniques to study, predict, and analyze the protein folding process. Protein Folding Protocols also provides sample approaches toward the prediction of protein structure starting from the amino acid sequence, in the absence of overall homologous sequences.




Protein Folding


Book Description

This volume provides comprehensive protocols on experimental and computational methods that are used to study probe protein folding reactions and mechanisms. Chapters divided into five parts detail protein engineering, protein chemistry, experimental approaches to investigate the thermodynamics and kinetics of protein folding transitions, probe protein folding at the single molecule, analysis and interpretation of computer simulations, procedures and tools for the prediction of protein folding properties. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Protein Folding: Methods and Protocols aims to be a useful practical guide to researches to help further their study in this field.




Protein Folding, Misfolding, and Disease


Book Description

Protein misfolding is a key feature of many disorders in humans, given that over twenty proteins are known to misfold and cause disease. In Protein Folding, Misfolding, and Disease: Methods and Protocols, experts in the field present a collection of current methods for studying the analysis of protein folding and misfolding, featuring strategies for expressing and refolding recombinant proteins which can then be utilized in subsequent experiments. This detailed volume also covers methods for analyzing the formation of amyloid, protocols for determining the size and structure of native and misfolded proteins, as well as specific examples of where misfolded proteins can be examined using state-of –the-art technologies. Written in the highly successful Methods in Molecular BiologyTM series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Up to date and authoritative, Protein Folding, Misfolding, and Disease: Methods and Protocols offers researchers the tools necessary to move ahead in this vital field.




Protein Structure Prediction


Book Description

The number of protein sequences grows each year, yet the number of structures deposited in the Protein Data Bank remains relatively small. The importance of protein structure prediction cannot be overemphasized, and this volume is a timely addition to the literature in this field. Protein Structure Prediction: Methods and Protocols is a departure from the normal Methods in Molecular Biology series format. By its very nature, protein structure prediction demands that there be a greater mix of theoretical and practical aspects than is normally seen in this series. This book is aimed at both the novice and the experienced researcher who wish for detailed inf- mation in the field of protein structure prediction; a major intention here is to include important information that is needed in the day-to-day work of a research scientist, important information that is not always decipherable in scientific literature. Protein Structure Prediction: Methods and Protocols covers the topic of protein structure prediction in an eclectic fashion, detailing aspects of pred- tion that range from sequence analysis (a starting point for many algorithms) to secondary and tertiary methods, on into the prediction of docked complexes (an essential point in order to fully understand biological function). As this volume progresses, the authors contribute their expert knowledge of protein structure prediction to many disciplines, such as the identification of motifs and domains, the comparative modeling of proteins, and ab initio approaches to protein loop, side chain, and protein prediction.




Membrane Protein Protocols


Book Description

Knowledge of the three-dimensional structure of a protein is absolutely required for the complete understanding of its function. The spatial orientation of amino acids in the active site of an enzyme demonstrates how substrate specificity is defined, and assists the medicinal chemist in the design of s- cific, tight-binding inhibitors. The shape and contour of a protein surface hints at its interaction with other proteins and with its environment. Structural ana- sis of multiprotein complexes helps to define the role and interaction of each individual component, and can predict the consequences of protein mutation or conditions that promote dissociation and rearrangement of the complex. Determining the three-dimensional structure of a protein requires milligram quantities of pure material. Such quantities are required to refine crystallization conditions for X-ray analysis, or to overcome the sensitivity limitations of NMR spectroscopy. Historically, structural determination of proteins was limited to those expressed naturally in large amounts, or derived from a tissue or cell source inexpensive enough to warrant the use of large quantities of cells. H- ever, with the advent of the techniques of modern gene expression, many p- teins that are constitutively expressed in minute amounts can become accessible to large-scale purification and structural analysis.




Protein Misfolding Diseases


Book Description




Protein Supersecondary Structures


Book Description

This second edition volume expands on the previous edition with an update on the latest developments in the field and new techniques used to study secondary and supersecondary structures (SSS) in proteins. Chapters in this book discuss topics such as sequence and structural features of different SSS elements; software used for the automatic annotation of secondary structure elements in proteins; the new developments in secondary and SSS prediction and the modern approaches for energy landscape calculation; protein misfolding and amyloid structural formation; analysis of ‘transformer proteins’; discovery of the structure of the hydrophobic nucleus; and discussions of the main principles of protein structures formation. The contributing authors of the volume are the eminent experts in the field of protein research and bioinformatics. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Protein Supersecondary Structures: Methods and Protocols, Second Edition is a valuable resource for researchers who are interested in learning more about the relationship between amino acids sequences and protein structures, the evolution of proteins and the dynamics of protein formation.




Protein Folding


Book Description

Protein Folding aims to collect the most important information in the field of protein folding and probes the main principles that govern formation of the three-dimensional structure of a protein from a nascent polypeptide chain, as well as how the functional properties appear. This text is organized into three sections and consists of 15 chapters. After an introductory chapter where the main problems of protein folding are considered at the cellular level in the context of protein biosynthesis, the discussion turns to the conformation of native globular proteins. Definitions and rules of nomenclature are given, including the structural organization of globular proteins deduced from X-ray crystallographic data. Folding mechanisms are tentatively deduced from the observation of invariants in the architecture of folded proteins. The next chapters focus on the energetics of protein conformation and structure, indicating the principles of thermodynamic stability of the native structure, along with theoretical computation studies of protein folding, structure prediction, and folding simulation. The reader is also introduced to various experimental approaches; the reversibility of the unfolding-folding process; equilibrium and kinetic studies; and detection and characterization of intermediates in protein folding. This text concludes with a chapter dealing with problems specific to oligomeric proteins. This book is intended for research scientists, specialists, biochemists, and students of biochemistry and biology.




Protein Stability and Folding


Book Description

In Protein Stability and Folding: Theory and Practice, world-class scientists present in a single volume a comprehensive selection of hands-on recipes for all of the major techniques needed to understand the conformational stability of proteins, as well as their three-dimensional folding. The distinguished contributors provide clear, step-by-step instructions along with many troubleshooting tips, alternative procedures, and informative explanations about why certain steps are necessary. Even highly skilled researchers will find many time-saving methods. Among the techniques discussed are fluorescent, ultraviolet, and infrared spectroscopy; HPLC peptide mapping; differential scanning calorimetry; and hydrogen exchange. Shirley's Protein Stability and Folding: Theory and Practice will ensure a significant difference in the outcome of your experiments, producing the result desired even for beginners.




Protein Misfolding and Disease


Book Description

For decades it has been known that structured conformations are important for the proper functioning of most cellular proteins. However, appreciation that protein folding to the functional conformations as well as the structural maintenance of protein molecules are very complex processes has only emerged during the last ten years. The intimate interplay uncovered by this scientific development led us to realize that perturbations of the protein folding process and disturbances of conformational maintenance are major disease mechanisms. This development has given rise to the concept of conformational diseases and the broader signature of protein folding diseases, comprising diseases in which mutations or environmental stresses may result in a partial misfolding that leads then to alternative conformations capable of disturbing cellular processes. This may happen by self-association (aggregation), as in prion and Alzheimer’s diseases, or by incorporation of alternatively folded subunits into structural entities, as in collagen diseases. Another possibility is that folding to the native structure is impaired or abolished, resulting in decreased stea- state levels of the correctly folded protein, as is observed in cystic fibrosis and 1-antitrypsin deficiency, as well as in many enzyme deficiencies. In addition, deficiencies of proteins that are engaged in assisting and supervising protein folding (protein quality control) may impair the folding of many other proteins, resulting in pathological phenotypes. Examples of this are the spastic paraplegia attributable to mutations in mitochondrial protease/chaperone complexes.