Protein Instability at Interfaces During Drug Product Development


Book Description

Proteins are exposed to various interfacial stresses during drug product development. They are subjected to air-liquid, liquid-solid, and, sometimes, liquid-liquid interfaces throughout the development cycle-from manufacturing of drug substances to storage and drug delivery. Unlike small molecule drugs, proteins are typically unstable at interfaces where, on adsorption, they often denature and form aggregates, resulting in loss of efficacy and potential immunogenicity. This book covers both the fundamental aspects of proteins at interfaces and the quantification of interfacial behaviors of proteins. Importantly, this book introduces the industrial aspects of protein instabilities at interfaces, including the processes that introduce new interfaces, evaluation of interfacial instabilities, and mitigation strategies. The audience that this book targets encompasses scientists in the pharmaceutical and biotech industry, as well as faculty and students from academia in the surface science, pharmaceutical, and medicinal chemistry areas.




Surfactants in Biopharmaceutical Development


Book Description

Surfactants in Biopharmaceutical Development addresses the progress, challenges and opportunities for surfactant research specific to pharmaceutical development, providing a broad range of important surfactant-related topics as they relate directly to the biopharmaceutical process. Chapters address fundamental topics, like mechanisms of protein stabilization by surfactants, the latest, state-of-the-art technology and methods to illustrate the practical application to biopharmaceutical development, forward-looking chapters on control strategies and novel surfactants, with a special focus on current regulatory aspects of paramount importance for biopharmaceutical companies and regulators. It has been widely recognized that surfactants provide protection to therapeutic proteins against interfacial stresses. Despite the fact that the very mechanism of protein stabilization by surfactants has not been completely understood, surfactants are universally regarded as critical functional excipients by the industry and by regulators. - Describes the current state of research on surfactants in the context of biopharmaceutical development, drawing upon contributions from international experts across industry, academia, and regulators - Addresses the opportunities and challenges associated with surfactants in biologic drug development - Provides a defining resource for practitioners in the biopharmaceutical industry, regulators and academics by summarizing the latest knowledge of surfactants in biopharmaceutical development in one comprehensive volume




Challenges in Protein Product Development


Book Description

In this volume, the authors discuss the many significant challenges currently faced in biotechnology dosage form development, providing guidance, shared experience and thoughtful reflection on how best to address these potential concerns. As the field of therapeutic recombinant therapeutic proteins enters its fourth decade and the market for biopharmaceuticals becomes increasingly competitive, companies are increasingly dedicating resources to develop innovative biopharmaceuticals to address unmet medical needs. Often, the pharmaceutical development scientist is encountering challenging pharmaceutical properties of a given protein or by the demands placed on the product by stability, manufacturing and preclinical or clinical expectations, as well as the evolving regulatory expectations and landscape. Further, there have been new findings that require close assessment, as for example those related to excipient quality, processing, viscosity and device compatibility and administration, solubility and opalescence and container-closure selection. The literature varies widely in its discussion of these critical elements and consensus does not exist. This topic is receiving a great deal of attention within the biotechnology industry as well as with academic researchers and regulatory agencies globally. Therefore, this book is of interest for business leaders, researchers, formulation and process development scientists, analytical scientists, QA and QC officers, regulatory staff, manufacturing leaders and regulators active in the pharmaceutical and biotech industry, and expert reviewers in regulatory agencies.




Aggregation of Therapeutic Proteins


Book Description

This book gives pharmaceutical scientists an up-to-date resource on protein aggregation and its consequences, and available methods to control or slow down the aggregation process. While significant progress has been made in the past decade, the current understanding of protein aggregation and its consequences is still immature. Prevention or even moderate inhibition of protein aggregation has been mostly experimental. The knowledge in this book can greatly help pharmaceutical scientists in the development of therapeutic proteins, and also instigate further scientific investigations in this area. This book fills such a need by providing an overview on the causes, consequences, characterization, and control of the aggregation of therapeutic proteins.




Development of Biopharmaceutical Drug-Device Products


Book Description

The biotechnology/biopharmaceutical sector has tremendously grown which led to the invention of engineered antibodies such as Antibody Drug Conjugates (ADCs), Bispecific T-cell engager (BITES), Dual Variable Domain (DVD) antibodies, and fusion proteins that are currently being used as therapeutic agents for immunology, oncology and other disease conditions. Regulatory agencies have raised the bar for the development and manufacture of antibody-based products, expecting to see the use of Quality by Design (QbD) elements demonstrating an in-depth understanding of product and process based on sound science. Drug delivery systems have become an increasingly important part of the therapy and most biopharmaceuticals for self-administration are being marketed as combination products. A survey of the market indicates that there is a strong need for a new book that will provide “one stop shopping” for the latest information and knowledge of the scientific and engineering advances made over the last few years in the area of biopharmaceutical product development. The new book entitled Development of Biopharmaceutical Drug Device Products is a reference text for scientists and engineers in the biopharmaceutical industry, academia or regulatory agencies. With insightful chapters from experts in the field, this new book reviews first principles, covers recent technological advancements and provides case studies and regulatory strategies relating to the development and manufacture of antibody-based products. It covers topics such as the importance of early preformulation studies during drug discovery to influence molecular selection for development, formulation strategies for new modalities, and the analytical techniques used to characterize them. It also addresses important considerations for later stage development such as the development of robust formulations and processes, including process engineering and modeling of manufacturing unit operations, the design of analytical comparability studies, and characterization of primary containers (pre-filled syringes and vials).Finally, the latter half of the book reviews key considerations to ensure the development and approval of a patient-centered delivery system design. This involves the evolving regulatory framework with perspectives from both the US and EU industry experts, the role of international standards, design control/risk management, human factors and its importance in the product development and regulatory approval process, as well as review of the risk-based approach to bridging between devices used in clinical trials and the to-be-marketed device. Finally, case studies are provided throughout.The typical readership would have biology and/or engineering degrees and would include researchers, scientific leaders, industry specialists and technology developers working in the biopharmaceutical field.




Dosage Form Design Considerations


Book Description

Dosage Form Design Parameters, Volume I, examines the history and current state of the field within the pharmaceutical sciences, presenting key developments. Content includes drug development issues, the scale up of formulations, regulatory issues, intellectual property, solid state properties and polymorphism. Written by experts in the field, this volume in the Advances in Pharmaceutical Product Development and Research series deepens our understanding of dosage form design parameters. Chapters delve into a particular aspect of this fundamental field, covering principles, methodologies and the technologies employed by pharmaceutical scientists. In addition, the book contains a comprehensive examination suitable for researchers and advanced students working in pharmaceuticals, cosmetics, biotechnology and related industries. - Examines the history and recent developments in drug dosage forms for pharmaceutical sciences - Focuses on physicochemical aspects, prefomulation solid state properties and polymorphism - Contains extensive references for further discovery and learning that are appropriate for advanced undergraduates, graduate students and those interested in drug dosage design




Parenteral Medications, Fourth Edition


Book Description

Parenteral Medications is an authoritative, comprehensive reference work on the formulation and manufacturing of parenteral dosage forms, effectively balancing theoretical considerations with practical aspects of their development. Previously published as a three-volume set, all volumes have been combined into one comprehensive publication that addresses the plethora of changes in the science and considerable advances in the technology associated with these products and routes of administration. Key Features: Provides a comprehensive reference work on the formulation and manufacturing of parenteral dosage forms Addresses changes in the science and advances in the technology associated with parenteral medications and routes of administration Includes 13 new chapters and updated chapters throughout Contains the contributors of leading researchers in the field of parenteral medications Uses full color detailed illustrations, enhancing the learning process The fourth edition not only reflects enhanced content in all the chapters but also highlights the rapidly advancing formulation, processing, manufacturing parenteral technology including advanced delivery and cell therapies. The book is divided into seven sectionss: Section 1 - Parenteral Drug Administration and Delivery Devices; Section 2 - Formulation Design and Development; Section 3 - Specialized Drug Delivery Systems; Section 4 - Primary Packaging and Container Closure Integrity; Section 5 - Facility Design and Environmental Control; Section 6 - Sterilization and Pharmaceutical Processing; Section 7 - Quality Testing and Regulatory Requirements




Principles and Practices of Lyophilization in Product Development and Manufacturing


Book Description

The biotechnology/biopharmaceutical sector has tremendously grown which led to the invention of engineered antibodies such as Antibody Drug Conjugates (ADCs), Bispecific T cell engager ( BITES), Dual Variable Domain ( DVD), Chimeric Antigen Receptor - Modified Tcells (CART) that are currently being used as therapeutic agents for immunology and oncology disease conditions. In addition to other pharmaceuticals and biopharmaceuticals, all these novel formats are fragile with respect to their stability/structure under processing conditions meaning marginal stability in the liquid state and often require lyophilization to enhance their stability and shelf-life. This book contains chapters/topics that will describe every aspect of the lyophilization process and product development and manufacturing starting from the overview of lyophilization process, equipment required, characterization of the material, design and development of the formulation and lyophilization process, various techniques for characterization of the product, scale-up/tech-transfer and validation. It also describes the application of CFD coupled with mathematical modeling in the lyophilization process and product development, scale-up, and manufacturing. Additionally, Principles and Practice of Lyophilization Process and Product Development contains an entire dedicated section on “Preservation of Biologicals” comprised of nine chapters written by experts and including case studies.




Managing the Drug Discovery Process


Book Description

Managing the Drug Discovery Process, Second Edition thoroughly examines the current state of pharmaceutical research and development by providing experienced perspectives on biomedical research, drug hunting and innovation, including the requisite educational paths that enable students to chart a career path in this field. The book also considers the interplay of stakeholders, consumers, and drug firms with respect to a myriad of factors. Since drug research can be a high-risk, high-payoff industry, it is important to students and researchers to understand how to effectively and strategically manage both their careers and the drug discovery process. This new edition takes a closer look at the challenges and opportunities for new medicines and examines not only the current research milieu that will deliver novel therapies, but also how the latest discoveries can be deployed to ensure a robust healthcare and pharmacoeconomic future. All chapters have been revised and expanded with new discussions on remarkable advances including CRISPR and the latest gene therapies, RNA-based technologies being deployed as vaccines as well as therapeutics, checkpoint inhibitors and CAR-T approaches that cure cancer, diagnostics and medical devices, entrepreneurship, and AI. Written in an engaging manner and including memorable insights, this book is aimed at anyone interested in helping to save countless more lives through science. A valuable and compelling resource, this is a must-read for all students, educators, practitioners, and researchers at large—indeed, anyone who touches this critical sphere of global impact—in and around academia and the biotechnology/pharmaceutical industry. - Considers drug discovery in multiple R&D venues - big pharma, large biotech, start-up ventures, academia, and nonprofit research institutes - with a clear description of the degrees and training that will prepare students well for a career in this arena - Analyzes the organization of pharmaceutical R&D, taking into account human resources considerations like recruitment and configuration, management of discovery and development processes, and the coordination of internal research within, and beyond, the organization, including outsourced work - Presents a consistent, well-connected, and logical dialogue that readers will find both comprehensive and approachable - Addresses new areas such as CRISPR gene editing technologies and RNA-based drugs and vaccines, personalized medicine and ethical and moral issues, AI/machine learning and other in silico approaches, as well as completely updating all chapters




Rational Design of Stable Protein Formulations


Book Description

Recombinant proteins and polypeptides continue to be the most important class of biotechnology-derived agents in today's pharmaceutical industry. Over the past few years, our fundamental understanding of how proteins degrade and how stabilizing agents work has made it possible to approach formulation of protein pharmaceuticals from a much more rational point of view. This book describes the current level of understanding of protein instability and the strategies for stabilizing proteins under a variety of stressful conditions.