Protein-Protein Interactions


Book Description

This book provides a comprehensive overview of the fundamental aspects of protein-protein interactions (PPI), including a detailed account of the energetics and thermodynamics involved in these interactions. It also discusses a number of computational and experimental approaches for the prediction of PPI interactions and reviews their principles, advantages, drawbacks, and the recent developments. Further, it offers structural and mechanistic insights into the formation of protein-protein complexes and maps different PPIs into networks to delineate various pathways that operate at the cellular level. Lastly, it describes computational protein-protein docking techniques and discusses their implications for further experimental research. Given its scope, this book is a valuable resource for students, researchers, scientists, entrepreneurs, and medical/healthcare professionals.




Proteins—Advances in Research and Application: 2012 Edition


Book Description

Proteins—Advances in Research and Application: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Proteins. The editors have built Proteins—Advances in Research and Application: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Proteins in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Proteins—Advances in Research and Application: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




EHP


Book Description




Protein-Protein Interactions


Book Description

Proteins are indispensable players in virtually all biological events. The functions of proteins are coordinated through intricate regulatory networks of transient protein-protein interactions (PPIs). To predict and/or study PPIs, a wide variety of techniques have been developed over the last several decades. Many in vitro and in vivo assays have been implemented to explore the mechanism of these ubiquitous interactions. However, despite significant advances in these experimental approaches, many limitations exist such as false-positives/false-negatives, difficulty in obtaining crystal structures of proteins, challenges in the detection of transient PPI, among others. To overcome these limitations, many computational approaches have been developed which are becoming increasingly widely used to facilitate the investigation of PPIs. This book has gathered an ensemble of experts in the field, in 22 chapters, which have been broadly categorized into Computational Approaches, Experimental Approaches, and Others.




Fuzziness


Book Description

Detailed characterization of fuzzy interactions will be of central importance for understanding the diverse biological functions of intrinsically disordered proteins in complex eukaryotic signaling networks. In this volume, Peter Tompa and Monika Fuxreiter have assembled a series of papers that address the issue of fuzziness in molecular interactions. These papers provide a broad overview of the phenomenon of fuzziness and provide compelling examples of the central role played by fuzzy interactions in regulation of cellular signaling processes and in viral infectivity. These contributions summarize the current state of knowledge in this new field and will undoubtedly stimulate future research that will further advance our understanding of fuzziness and its role in biomolecular interactions.




Protein Interactions


Book Description

Protein Interactions A fundamental guide to the burgeoning field of protein interactions From enzymes to transcription factors to cell membrane receptors, proteins are at the heart of biological cell function. Virtually all cellular processes are governed by their interactions, with one another, with cell bodies, with DNA, or with small molecules. The systematic study of these interactions is called Interactomics, and research within this new field promises to shape the future of molecular cell biology. Protein Interactions goes beyond any existing guide to protein interactions, presenting the first truly comprehensive overview of the field. Edited by two leading scholars in the field of protein bioinformatics, this book covers all known categories of protein interaction, stable as well as transient, as well as the effect of mutations and post-translational modifications on the interaction behavior. Protein Interactions readers will also find: Introductory chapters on protein structure, conformational dynamics, and protein-protein binding interfaces A data-driven approach incorporating machine learning and integrating experimental data into computational models An outlook on the current challenges in the field and suggestions for future research Protein Interactions will serve as a fundamental resource for novice researchers who want a systematic introduction to interactomics, as well as for experienced cell biologists and bioinformaticians who want to gain an edge in this exciting new field.




Rendering Life Molecular


Book Description

What are living bodies made of? Protein modelers tell us that our cells are composed of millions of proteins, intricately folded molecular structures on the scale of nanoparticles. Proteins twist and wriggle as they carry out the activities that keep cells alive. Figuring out how to make these unruly substances visible, tangible, and workable is a challenging task, one that is not readily automated, even by the fastest computers. Natasha Myers explores what protein modelers must do to render three-dimensional, atomic-resolution models of these lively materials. Rendering Life Molecular shows that protein models are not just informed by scientific data: model building entangles a modeler’s entire sensorium, and modelers must learn to feel their way through the data in order to interpret molecular forms. Myers takes us into protein modeling laboratories and classrooms, tracking how gesture, affect, imagination, and intuition shape practices of objectivity. Asking, ‘What is life becoming in modelers' hands?’ she tunes into the ways they animate molecules through their moving bodies and other media. In the process she amplifies an otherwise muted liveliness inflecting mechanistic accounts of the stuff of life.




Systems Biology for Signaling Networks


Book Description

System Biology encompasses the knowledge from diverse fields such as Molecular Biology, Immunology, Genetics, Computational Biology, Mathematical Biology, etc. not only to address key questions that are not answerable by individual fields alone, but also to help in our understanding of the complexities of biological systems. Whole genome expression studies have provided us the means of studying the expression of thousands of genes under a particular condition and this technique had been widely used to find out the role of key macromolecules that are involved in biological signaling pathways. However, making sense of the underlying complexity is only possible if we interconnect various signaling pathways into human and computer readable network maps. These maps can then be used to classify and study individual components involved in a particular phenomenon. Apart from transcriptomics, several individual gene studies have resulted in adding to our knowledge of key components that are involved in a signaling pathway. It therefore becomes imperative to take into account of these studies also, while constructing our network maps to highlight the interconnectedness of the entire signaling pathways and the role of that particular individual protein in the pathway. This collection of articles will contain a collection of pioneering work done by scientists working in regulatory signaling networks and the use of large scale gene expression and omics data. The distinctive features of this book would be: Act a single source of information to understand the various components of different signaling network (roadmap of biochemical pathways, the nature of a molecule of interest in a particular pathway, etc.), Serve as a platform to highlight the key findings in this highly volatile and evolving field, and Provide answers to various techniques both related to microarray and cell signaling to the readers.







Bioinformatics of Human Proteomics


Book Description

“Bioinformatics of Human Proteomics” discusses the development of methods, techniques and applications in the field of protein bioinformatics, an important direction in bioinformatics. It collects contributions from expert researchers in order to provide a practical guide to this complex field of study. The book covers the protein interaction network, drug discovery and development, the relationship between translational medicine and bioinformatics, and advances in proteomic methods, while also demonstrating important bioinformatics tools and methods available today for protein analysis, interpretation and predication. It is intended for experts or senior researchers in the fields of clinical research-related biostatistics, bioinformatics, computational biology, medicine, statistics, system biology, molecular diagnostics, biomarkers, or drug discovery and development. Dr.Xiangdong Wang works as a distinguished professor of Respiratory Medicine at Fudan University, Shanghai, China. He serves as Director of Biomedical Research Center, Fudan University Zhongshan Hospital and adjunct professor of Clinical Bioinformatics at Lund University, Sweden. His main research is focused on the role of clinical bioinformatics in the development of disease-specific biomarkers and dynamic network biomarkers, the molecular mechanism of organ dysfunction and potential therapies.