High-Performance and Time-Predictable Embedded Computing


Book Description

Nowadays, the prevalence of computing systems in our lives is so ubiquitous that we live in a cyber-physical world dominated by computer systems, from pacemakers to cars and airplanes. These systems demand for more computational performance to process large amounts of data from multiple data sources with guaranteed processing times. Actuating outside of the required timing bounds may cause the failure of the system, being vital for systems like planes, cars, business monitoring, e-trading, etc. High-Performance and Time-Predictable Embedded Computing presents recent advances in software architecture and tools to support such complex systems, enabling the design of embedded computing devices which are able to deliver high-performance whilst guaranteeing the application required timing bounds. Technical topics discussed in the book include: Parallel embedded platformsProgramming modelsMapping and scheduling of parallel computationsTiming and schedulability analysisRuntimes and operating systems The work reflected in this book was done in the scope of the European project P‑SOCRATES, funded under the FP7 framework program of the European Commission. High-performance and time-predictable embedded computing is ideal for personnel in computer/communication/embedded industries as well as academic staff and master/research students in computer science, embedded systems, cyber-physical systems and internet-of-things.




Techniques for Building Timing-Predictable Embedded Systems


Book Description

This book describes state-of-the-art techniques for designing real-time computer systems. The author shows how to estimate precisely the effect of cache architecture on the execution time of a program, how to dispatch workload on multicore processors to optimize resources, while meeting deadline constraints, and how to use closed-form mathematical approaches to characterize highly variable workloads and their interaction in a networked environment. Readers will learn how to deal with unpredictable timing behaviors of computer systems on different levels of system granularity and abstraction.




Embedded Systems Design


Book Description

This extensive and increasing use of embedded systems and their integration in everyday products mark a significant evolution in information science and technology. Nowadays embedded systems design is subject to seamless integration with the physical and electronic environment while meeting requirements like reliability, availability, robustness, power consumption, cost, and deadlines. Thus, embedded systems design raises challenging problems for research, such as security, reliable and mobile services, large-scale heterogeneous distributed systems, adaptation, component-based development, and validation and tool-based certification. This book results from the ARTIST FP5 project funded by the European Commision. By integration 28 leading European research institutions with many top researchers in the area, this book assesses and strategically advances the state of the art in embedded systems. The coherently written monograph-like book is a valuable source of reference for researchers active in the field and serves well as an introduction to scientists and professionals interested in learning about embedded systems design.




Handbook of Real-Time Computing


Book Description

The aim of this handbook is to summarize the recent rapidly developed real-time computing technologies, from theories to applications. This handbook benefits the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications. In general, the handbook is divided into three main parts (subjected to be modified): theory, design, and application covering different but not limited to the following topics: - Real-time operating systems - Real-time scheduling - Timing analysis - Programming languages and run-time systems - Middleware systems - Design and analysis tools - Real-time aspects of wireless sensor networks - Energy aware real-time methods




Embedded Systems Handbook


Book Description

Considered a standard industry resource, the Embedded Systems Handbook provided researchers and technicians with the authoritative information needed to launch a wealth of diverse applications, including those in automotive electronics, industrial automated systems, and building automation and control. Now a new resource is required to report on current developments and provide a technical reference for those looking to move the field forward yet again. Divided into two volumes to accommodate this growth, the Embedded Systems Handbook, Second Edition presents a comprehensive view on this area of computer engineering with a currently appropriate emphasis on developments in networking and applications. Those experts directly involved in the creation and evolution of the ideas and technologies presented offer tutorials, research surveys, and technology overviews that explore cutting-edge developments and deployments and identify potential trends. This first self-contained volume of the handbook, Embedded Systems Design and Verification, is divided into three sections. It begins with a brief introduction to embedded systems design and verification. It then provides a comprehensive overview of embedded processors and various aspects of system-on-chip and FPGA, as well as solutions to design challenges. The final section explores power-aware embedded computing, design issues specific to secure embedded systems, and web services for embedded devices. Those interested in taking their work with embedded systems to the network level should complete their study with the second volume: Network Embedded Systems.




Real-Time Embedded Components and Systems with Linux and RTOS


Book Description

This book is intended to provide a senior undergraduate or graduate student in electrical engineering or computer science with a balance of fundamental theory, review of industry practice, and hands-on experience to prepare for a career in the real-time embedded system industries. It is also intended to provide the practicing engineer with the necessary background to apply real-time theory to the design of embedded components and systems. Typical industries include aerospace, medical diagnostic and therapeutic systems, telecommunications, automotive, robotics, industrial process control, media systems, computer gaming, and electronic entertainment, as well as multimedia applications for general-purpose computing. This updated edition adds three new chapters focused on key technology advancements in embedded systems and with wider coverage of real-time architectures. The overall focus remains the RTOS (Real-Time Operating System), but use of Linux for soft real-time, hybrid FPGA (Field Programmable Gate Array) architectures and advancements in multi-core system-on-chip (SoC), as well as software strategies for asymmetric and symmetric multiprocessing (AMP and SMP) relevant to real-time embedded systems, have been added. Companion files are provided with numerous project videos, resources, applications, and figures from the book. Instructors’ resources are available upon adoption. FEATURES: • Provides a comprehensive, up to date, and accessible presentation of embedded systems without sacrificing theoretical foundations • Features the RTOS (Real-Time Operating System), but use of Linux for soft real-time, hybrid FPGA architectures and advancements in multi-core system-on-chip is included • Discusses an overview of RTOS advancements, including AMP and SMP configurations, with a discussion of future directions for RTOS use in multi-core architectures, such as SoC • Detailed applications coverage including robotics, computer vision, and continuous media • Includes a companion disc (4GB) with numerous videos, resources, projects, examples, and figures from the book • Provides several instructors’ resources, including lecture notes, Microsoft PP slides, etc.




Encyclopedia of Computer Science and Technology


Book Description

"This comprehensive reference work provides immediate, fingertip access to state-of-the-art technology in nearly 700 self-contained articles written by over 900 international authorities. Each article in the Encyclopedia features current developments and trends in computers, software, vendors, and applications...extensive bibliographies of leading figures in the field, such as Samuel Alexander, John von Neumann, and Norbert Wiener...and in-depth analysis of future directions."




Mastering Embedded Systems From Scratch


Book Description

"Mastering Embedded Systems From Scratch " is an all-encompassing, inspiring, and captivating guide designed to elevate your engineering skills to new heights. This comprehensive resource offers an in-depth exploration of embedded systems engineering, from foundational principles to cutting-edge technologies and methodologies. Spanning 14 chapters, this exceptional book covers a wide range of topics, including microcontrollers, programming languages, communication protocols, software testing, ARM fundamentals, real-time operating systems (RTOS), automotive protocols, AUTOSAR, Embedded Linux, Adaptive AUTOSAR, and the Robot Operating System (ROS). With its engaging content and practical examples, this book will not only serve as a vital knowledge repository but also as an essential tool to catapult your career in embedded systems engineering. Each chapter is meticulously crafted to ensure that engineers have a solid understanding of the subject matter and can readily apply the concepts learned to real-world scenarios. The book combines theoretical knowledge with practical case studies and hands-on labs, providing engineers with the confidence to tackle complex projects and make the most of powerful technologies. "Mastering Embedded Systems From Scratch" is an indispensable resource for engineers seeking to broaden their expertise, improve their skills, and stay up-to-date with the latest advancements in the field of embedded systems. Whether you are a seasoned professional or just starting your journey, this book will serve as your ultimate guide to mastering embedded systems, preparing you to tackle the challenges of the industry with ease and finesse. Embark on this exciting journey and transform your engineering career with "Mastering Embedded Systems From Scratch" today! "Mastering Embedded Systems From Scratch" is your ultimate guide to becoming a professional embedded systems engineer. Curated from 24 authoritative references, this comprehensive book will fuel your passion and inspire success in the fast-paced world of embedded systems. Dive in and unleash your potential! Here are the chapters : Chapter 1: Introduction to Embedded System Chapter 2: C Programming Chapter 3: Embedded C Chapter 4: Data Structure/SW Design Chapter 5: Microcontroller Fundamentals Chapter 6: MCU Essential Peripherals Chapter 7: MCU Interfacing Chapter 8: SW Testing Chapter 9: ARM Fundamentals Chapter 10: RTOS Chapter 11: Automotive Protocols Chapter 12: Introduction to AUTOSAR Chapter 13: Introduction to Embedded Linux Chapter 14: Advanced Topics




Scientific Engineering of Distributed Java Applications


Book Description

FIDJI 2004 was an international forum for researchers and practitioners int- estedinthe advancesin,andapplicationsof,softwareengineeringfordistributed application development. Concerning the technologies, the workshop focused on “Java-related” technologies. It was an opportunity to present and observe the latest research, results, and ideas in these areas. Allpaperssubmittedtothisworkshopwerereviewedbyatleasttwomembers of the International Program Committee. Acceptance was based primarily on originality and contribution. We selected, for these post-workshop proceedings, 11 papers amongst 22 submitted, a tutorial and two keynotes. FIDJI2004aimedatpromotingascienti?capproachtosoftwareengineering. The scope of the workshop included the following topics: – design of distributed applications – development methodologies for software and system engineering – UML-based development methodologies – development of reliable and secure distributed systems – component-based development methodologies – dependability support during system life cycle – fault tolerance re?nement, evolution and decomposition – atomicity and exception handling in system development – software architectures, frameworks and design patterns for developing d- tributed systems – integration of formal techniques in the development process – formal analysis and grounding of modelling notation and techniques (e. g. , UML, metamodelling) – supporting the security and dependability requirements of distributed app- cations in the development process – distributed software inspection – refactoring methods – industrial and academic case studies – development and analysis tools The organization of such a workshop represents an important amount of work.




Modeling, Verification and Exploration of Task-Level Concurrency in Real-Time Embedded Systems


Book Description

system is a complex object containing a significant percentage of elec A tronics that interacts with the Real World (physical environments, humans, etc. ) through sensing and actuating devices. A system is heterogeneous, i. e. , is characterized by the co-existence of a large number of components of disparate type and function (for example, programmable components such as micro processors and Digital Signal Processors (DSPs), analog components such as AID and D/A converters, sensors, transmitters and receivers). Any approach to system design today must include software concerns to be viable. In fact, it is now common knowledge that more than 70% of the development cost for complex systems such as automotive electronics and communication systems are due to software development. In addition, this percentage is increasing constantly. It has been my take for years that the so-called hardware-software co-design problem is formulated at a too low level to yield significant results in shorten ing design time to the point needed for next generation electronic devices and systems. The level of abstraction has to be raised to the Architecture-Function co-design problem, where Function refers to the operations that the system is supposed to carry out and Architecture is the set of supporting components for that functionality. The supporting components as we said above are heteroge neous and contain almost always programmable components.