Proving Einstein Right


Book Description

A thrilling adventure story chronicling the perilous journey of the scientists who set out to prove the theory of relativity--the results of which catapulted Albert Einstein to fame and forever changed our understanding of the universe. In 1911, a relatively unknown physicist named Albert Einstein published his preliminary theory of gravity. But it hadn't been tested. To do that, he needed a photograph of starlight as it passed the sun during a total solar eclipse. So began a nearly decade-long quest by seven determined astronomers from observatories in four countries, who traveled the world during five eclipses to capture the elusive sight. Over the years, they faced thunderstorms, the ravages of a world war, lost equipment, and local superstitions. Finally, in May of 1919, British expeditions to northern Brazil and the island of Príncipe managed to photograph the stars, confirming Einstein's theory. At its heart, this is a story of frustration, faith, and ultimate victory--and of the scientists whose efforts helped build the framework for the big bang theory, catapulted Einstein to international fame, and shook the foundation of physics.




Einstein Was Right!


Book Description

All modern books on Einstein emphasize the genius of his relativity theory and the corresponding corrections and extensions of the ancient space-time concept. However, Einstein's opposition to the use of probability in the laws of nature and particularly in the laws of quantum mechanics is criticized and often portrayed as outdated. The author of E




Gravity’s Century


Book Description

Ron Cowen offers a sweeping account of the century of experimentation that has consistently confirmed Einstein’s general theory of relativity. He shows how we got from Eddington’s pivotal observations of the 1919 eclipse to the Event Horizon Telescope, aimed at starlight wrapping around the black hole at our galaxy’s center.




A World Without Time


Book Description

It is a widely known but little considered fact that Albert Einstein and Kurt Godel were best friends for the last decade and a half of Einstein's life. The two walked home together from Princeton's Institute for Advanced Study every day; they shared ideas about physics, philosophy, politics, and the lost world of German science in which they had grown up. By 1949, Godel had produced a remarkable proof: In any universe described by the Theory of Relativity, time cannot exist . Einstein endorsed this result-reluctantly, since it decisively overthrew the classical world-view to which he was committed. But he could find no way to refute it, and in the half-century since then, neither has anyone else. Even more remarkable than this stunning discovery, however, was what happened afterward: nothing. Cosmologists and philosophers alike have proceeded with their work as if Godel's proof never existed -one of the greatest scandals of modern intellectual history. A World Without Time is a sweeping, ambitious book, and yet poignant and intimate. It tells the story of two magnificent minds put on the shelf by the scientific fashions of their day, and attempts to rescue from undeserved obscurity the brilliant work they did together.




No Shadow of a Doubt


Book Description

On their 100th anniversary, the story of the extraordinary scientific expeditions that ushered in the era of relativity In 1919, British scientists led extraordinary expeditions to Brazil and Africa to test Albert Einstein's revolutionary new theory of general relativity in what became the century's most celebrated scientific experiment. The result ushered in a new era and made Einstein a global celebrity by confirming his dramatic prediction that the path of light rays would be bent by gravity. Today, Einstein's theory is scientific fact. Yet the effort to weigh light by measuring the gravitational deflection of starlight during the May 29, 1919, solar eclipse has become clouded by myth and skepticism. Could Arthur Eddington and Frank Dyson have gotten the results they claimed? Did the pacifist Eddington falsify evidence to foster peace after a horrific war by validating the theory of a German antiwar campaigner? In No Shadow of a Doubt, Daniel Kennefick provides definitive answers by offering the most comprehensive and authoritative account of how expedition scientists overcame war, bad weather, and equipment problems to make the experiment a triumphant success. The reader follows Eddington on his voyage to Africa through his letters home, and delves with Dyson into how the complex experiment was accomplished, through his notes. Other characters include Howard Grubb, the brilliant Irishman who made the instruments; William Campbell, the American astronomer who confirmed the result; and Erwin Findlay-Freundlich, the German whose attempts to perform the test in Crimea were foiled by clouds and his arrest. By chronicling the expeditions and their enormous impact in greater detail than ever before, No Shadow of a Doubt reveals a story that is even richer and more exciting than previously known.




The Theory of One


Book Description

Christopher Bek has produced a revolutionary physics theory and claims that this theory of one (2001) solves the greatest scientific problem of all time by uniting relativity theory (1905) with quantum theory (1925). According to Bek, it proves that the universe is bounded at light speed and Planck's constant, that there is only one photon (i.e. a being of light), that one photon is God, and that reality is an illusion--meaning the moon does not exist when no one is looking at it. He says that physicists are ignoring the theory because it effectively pulls-their-pants-down. The theory is dead simple and can be explained in just a few minutes. The theory of one brings the reader face to face with the stunning realization that the universe is bounded—rather than unbounded, as Einstein and others have asserted. The theory of one delivers the ocean. It is the theory that spells the end of physics. It is the monolith of 2001—a spacetime odyssey.




Reality in the Shadows (Or) What the Heck's the Higgs?


Book Description

"Chronological explanation of physics from early history through current studies geared to lay readers with limited mathematical training"--




Not Even Wrong


Book Description

At what point does theory depart the realm of testable hypothesis and come to resemble something like aesthetic speculation, or even theology? The legendary physicist Wolfgang Pauli had a phrase for such ideas: He would describe them as "not even wrong," meaning that they were so incomplete that they could not even be used to make predictions to compare with observations to see whether they were wrong or not. In Peter Woit's view, superstring theory is just such an idea. In Not Even Wrong , he shows that what many physicists call superstring "theory" is not a theory at all. It makes no predictions, even wrong ones, and this very lack of falsifiability is what has allowed the subject to survive and flourish. Not Even Wrong explains why the mathematical conditions for progress in physics are entirely absent from superstring theory today and shows that judgments about scientific statements, which should be based on the logical consistency of argument and experimental evidence, are instead based on the eminence of those claiming to know the truth. In the face of many books from enthusiasts for string theory, this book presents the other side of the story.




Understanding Space-Time


Book Description

Presenting the history of space-time physics, from Newton to Einstein, as a philosophical development DiSalle reflects our increasing understanding of the connections between ideas of space and time and our physical knowledge. He suggests that philosophy's greatest impact on physics has come about, less by the influence of philosophical hypotheses, than by the philosophical analysis of concepts of space, time and motion, and the roles they play in our assumptions about physical objects and physical measurements. This way of thinking leads to interpretations of the work of Newton and Einstein and the connections between them. It also offers ways of looking at old questions about a priori knowledge, the physical interpretation of mathematics, and the nature of conceptual change. Understanding Space-Time will interest readers in philosophy, history and philosophy of science, and physics, as well as readers interested in the relations between physics and philosophy.




Superstring Theory


Book Description

This course provides a non-technical and accesible description of the central foundational concepts and historical development of the topic in theoritical physics called superstring/M-theory.