Pseudo Differential Operators And Markov Processes, Volume Ii: Generators And Their Potential Theory


Book Description

In this volume two topics are discussed: the construction of Feller and Lp-sub-Markovian semigroups by starting with a pseudo-differential operator, and the potential theory of these semigroups and their generators. The first part of the text essentially discusses the analysis of pseudo-differential operators with negative definite symbols and develops a symbolic calculus; in addition, it deals with special approaches, such as subordination in the sense of Bochner. The second part handles capacities, function spaces associated with continuous negative definite functions, Lp -sub-Markovian semigroups in their associated Bessel potential spaces, Stein's Littlewood-Paley theory, global properties of Lp-sub-Markovian semigroups, and estimates for transition functions.




Pseudo Differential Operators & Markov Processes: Markov processes and applications


Book Description

This work covers two topics in detail: Fourier analysis, with emphasis on positivity and also on some function spaces and multiplier theorems; and one-parameter operator semigroups with emphasis on Feller semigroups and Lp-sub-Markovian semigroups. In addition, Dirichlet forms are treated.




High Dimensional Probability


Book Description




Pseudo Differential Operators And Markov Processes, Volume Iii: Markov Processes And Applications


Book Description

This volume concentrates on how to construct a Markov process by starting with a suitable pseudo-differential operator. Feller processes, Hunt processes associated with Lp-sub-Markovian semigroups and processes constructed by using the Martingale problem are at the center of the considerations. The potential theory of these processes is further developed and applications are discussed. Due to the non-locality of the generators, the processes are jump processes and their relations to Levy processes are investigated. Special emphasis is given to the symbol of a process, a notion which generalizes that of the characteristic exponent of a Levy process and provides a natural link to pseudo-differential operator theory./a




Pseudo Differential Operators And Markov Processes, Volume I: Fourier Analysis And Semigroups


Book Description

After recalling essentials of analysis — including functional analysis, convexity, distribution theory and interpolation theory — this book handles two topics in detail: Fourier analysis, with emphasis on positivity and also on some function spaces and multiplier theorems; and one-parameter operator semigroups with emphasis on Feller semigroups and Lp-sub-Markovian semigroups. In addition, Dirichlet forms are treated. The book is self-contained and offers new material originated by the author and his students./a




Fractional Differential Equations


Book Description

This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.




Pseudo Differential Operators & Markov Processes


Book Description

This volume concentrates on how to construct a Markov process by starting with a suitable pseudo-differential operator. Feller processes, Hunt processes associated with Lp-sub-Markovian semigroups and processes constructed by using the Martingale problem are at the center of the considerations. The potential theory of these processes is further developed and applications are discussed. Due to the non-locality of the generators, the processes are jump processes and their relations to Levy processes are investigated. Special emphasis is given to the symbol of a process, a notion which generalizes that of the characteristic exponent of a Levy process and provides a natural link to pseudo-differential operator theory.




Introduction to Fractional and Pseudo-Differential Equations with Singular Symbols


Book Description

The book systematically presents the theories of pseudo-differential operators with symbols singular in dual variables, fractional order derivatives, distributed and variable order fractional derivatives, random walk approximants, and applications of these theories to various initial and multi-point boundary value problems for pseudo-differential equations. Fractional Fokker-Planck-Kolmogorov equations associated with a large class of stochastic processes are presented. A complex version of the theory of pseudo-differential operators with meromorphic symbols based on the recently introduced complex Fourier transform is developed and applied for initial and boundary value problems for systems of complex differential and pseudo-differential equations.




Hyperfinite Dirichlet Forms and Stochastic Processes


Book Description

This monograph treats the theory of Dirichlet forms from a comprehensive point of view, using "nonstandard analysis." Thus, it is close in spirit to the discrete classical formulation of Dirichlet space theory by Beurling and Deny (1958). The discrete infinitesimal setup makes it possible to study the diffusion and the jump part using essentially the same methods. This setting has the advantage of being independent of special topological properties of the state space and in this sense is a natural one, valid for both finite- and infinite-dimensional spaces. The present monograph provides a thorough treatment of the symmetric as well as the non-symmetric case, surveys the theory of hyperfinite Lévy processes, and summarizes in an epilogue the model-theoretic genericity of hyperfinite stochastic processes theory.




Semigroups, Boundary Value Problems and Markov Processes


Book Description

A careful and accessible exposition of functional analytic methods in stochastic analysis is provided in this book. It focuses on the interrelationship between three subjects in analysis: Markov processes, semi groups and elliptic boundary value problems. The author studies a general class of elliptic boundary value problems for second-order, Waldenfels integro-differential operators in partial differential equations and proves that this class of elliptic boundary value problems provides a general class of Feller semigroups in functional analysis. As an application, the author constructs a general class of Markov processes in probability in which a Markovian particle moves both by jumps and continuously in the state space until it 'dies' at the time when it reaches the set where the particle is definitely absorbed. Augmenting the 1st edition published in 2004, this edition includes four new chapters and eight re-worked and expanded chapters. It is amply illustrated and all chapters are rounded off with Notes and Comments where bibliographical references are primarily discussed. Thanks to the kind feedback from many readers, some errors in the first edition have been corrected. In order to keep the book up-to-date, new references have been added to the bibliography. Researchers and graduate students interested in PDEs, functional analysis and probability will find this volume useful.