Scientific Research in Education


Book Description

Researchers, historians, and philosophers of science have debated the nature of scientific research in education for more than 100 years. Recent enthusiasm for "evidence-based" policy and practice in educationâ€"now codified in the federal law that authorizes the bulk of elementary and secondary education programsâ€"have brought a new sense of urgency to understanding the ways in which the basic tenets of science manifest in the study of teaching, learning, and schooling. Scientific Research in Education describes the similarities and differences between scientific inquiry in education and scientific inquiry in other fields and disciplines and provides a number of examples to illustrate these ideas. Its main argument is that all scientific endeavors share a common set of principles, and that each fieldâ€"including education researchâ€"develops a specialization that accounts for the particulars of what is being studied. The book also provides suggestions for how the federal government can best support high-quality scientific research in education.







Publication ...


Book Description




Sharing Publication-Related Data and Materials


Book Description

Biologists communicate to the research community and document their scientific accomplishments by publishing in scholarly journals. This report explores the responsibilities of authors to share data, software, and materials related to their publications. In addition to describing the principles that support community standards for sharing different kinds of data and materials, the report makes recommendations for ways to facilitate sharing in the future.




Inquiry and the National Science Education Standards


Book Description

Humans, especially children, are naturally curious. Yet, people often balk at the thought of learning scienceâ€"the "eyes glazed over" syndrome. Teachers may find teaching science a major challenge in an era when science ranges from the hardly imaginable quark to the distant, blazing quasar. Inquiry and the National Science Education Standards is the book that educators have been waiting forâ€"a practical guide to teaching inquiry and teaching through inquiry, as recommended by the National Science Education Standards. This will be an important resource for educators who must help school boards, parents, and teachers understand "why we can't teach the way we used to." "Inquiry" refers to the diverse ways in which scientists study the natural world and in which students grasp science knowledge and the methods by which that knowledge is produced. This book explains and illustrates how inquiry helps students learn science content, master how to do science, and understand the nature of science. This book explores the dimensions of teaching and learning science as inquiry for K-12 students across a range of science topics. Detailed examples help clarify when teachers should use the inquiry-based approach and how much structure, guidance, and coaching they should provide. The book dispels myths that may have discouraged educators from the inquiry-based approach and illuminates the subtle interplay between concepts, processes, and science as it is experienced in the classroom. Inquiry and the National Science Education Standards shows how to bring the standards to life, with features such as classroom vignettes exploring different kinds of inquiries for elementary, middle, and high school and Frequently Asked Questions for teachers, responding to common concerns such as obtaining teaching supplies. Turning to assessment, the committee discusses why assessment is important, looks at existing schemes and formats, and addresses how to involve students in assessing their own learning achievements. In addition, this book discusses administrative assistance, communication with parents, appropriate teacher evaluation, and other avenues to promoting and supporting this new teaching paradigm.




Science and Judgment in Risk Assessment


Book Description

The public depends on competent risk assessment from the federal government and the scientific community to grapple with the threat of pollution. When risk reports turn out to be overblownâ€"or when risks are overlookedâ€"public skepticism abounds. This comprehensive and readable book explores how the U.S. Environmental Protection Agency (EPA) can improve its risk assessment practices, with a focus on implementation of the 1990 Clean Air Act Amendments. With a wealth of detailed information, pertinent examples, and revealing analysis, the volume explores the "default option" and other basic concepts. It offers two views of EPA operations: The first examines how EPA currently assesses exposure to hazardous air pollutants, evaluates the toxicity of a substance, and characterizes the risk to the public. The second, more holistic, view explores how EPA can improve in several critical areas of risk assessment by focusing on cross-cutting themes and incorporating more scientific judgment. This comprehensive volume will be important to the EPA and other agencies, risk managers, environmental advocates, scientists, faculty, students, and concerned individuals.




Exploration of the Seas


Book Description

In the summer of 1803, Thomas Jefferson sent Meriwether Lewis and William Clark on a journey to establish an American presence in a land of unqualified natural resources and riches. Is it fitting that, on the 200th anniversary of that expedition, the United States, together with international partners, should embark on another journey of exploration in a vastly more extensive region of remarkable potential for discovery. Although the oceans cover more than 70 percent of our planet's surface, much of the ocean has been investigated in only a cursory sense, and many areas have not been investigated at all. Exploration of the Seas assesses the feasibility and potential value of implementing a major, coordinated, international program of ocean exploration and discovery. The study committee surveys national and international ocean programs and strategies for cooperation between governments, institutions, and ocean scientists and explorers, identifying strengths, weaknesses, and gaps in these activities. Based primarily on existing documents, the committee summarizes priority areas for ocean research and exploration and examines existing plans for advancing ocean exploration and knowledge.







Enhancing the Value and Sustainability of Field Stations and Marine Laboratories in the 21st Century


Book Description

For over a century, field stations have been important entryways for scientists to study and make important discoveries about the natural world. They are centers of research, conservation, education, and public outreach, often embedded in natural environments that range from remote to densely populated urban locations. Because they lack traditional university departmental boundaries, researchers at field stations have the opportunity to converge their science disciplines in ways that can change careers and entire fields of inquiry. Field stations provide physical space for immersive research, hands-on learning, and new collaborations that are otherwise hard to achieve in the everyday bustle of research and teaching lives on campus. But the separation from university campuses that allows creativity to flourish also creates challenges. Sometimes, field stations are viewed as remote outposts and are overlooked because they tend to be away from population centers and their home institutions. This view is exacerbated by the lack of empirical evidence that can be used to demonstrate their value to science and society. Enhancing the Value and Sustainability of Field Stations and Marine Laboratories in the 21st Century summarizes field stations' value to science, education, and outreach and evaluates their contributions to research, innovation, and education. This report suggests strategies to meet future research, education, outreach, infrastructure, funding, and logistical needs of field stations. Today's technologies - such as streaming data, remote sensing, robot-driven monitoring, automated DNA sequencing, and nanoparticle environmental sensors - provide means for field stations to retain their special connection to nature and still interact with the rest of the world in ways that can fuel breakthroughs in the environmental, physical, natural, and social sciences. The intellectual and natural capital of today's field stations present a solid platform, but many need enhancements of infrastructure and dynamic leadership if they are to meet the challenges of the complex problems facing the world. This report focuses on the capability of field stations to address societal needs today and in the future.