Teaching Engineering, Second Edition


Book Description

The majority of professors have never had a formal course in education, and the most common method for learning how to teach is on-the-job training. This represents a challenge for disciplines with ever more complex subject matter, and a lost opportunity when new active learning approaches to education are yielding dramatic improvements in student learning and retention. This book aims to cover all aspects of teaching engineering and other technical subjects. It presents both practical matters and educational theories in a format useful for both new and experienced teachers. It is organized to start with specific, practical teaching applications and then leads to psychological and educational theories. The "practical orientation" section explains how to develop objectives and then use them to enhance student learning, and the "theoretical orientation" section discusses the theoretical basis for learning/teaching and its impact on students. Written mainly for PhD students and professors in all areas of engineering, the book may be used as a text for graduate-level classes and professional workshops or by professionals who wish to read it on their own. Although the focus is engineering education, most of this book will be useful to teachers in other disciplines. Teaching is a complex human activity, so it is impossible to develop a formula that guarantees it will be excellent. However, the methods in this book will help all professors become good teachers while spending less time preparing for the classroom. This is a new edition of the well-received volume published by McGraw-Hill in 1993. It includes an entirely revised section on the Accreditation Board for Engineering and Technology (ABET) and new sections on the characteristics of great teachers, different active learning methods, the application of technology in the classroom (from clickers to intelligent tutorial systems), and how people learn.




Integrating Information Into the Engineering Design Process


Book Description

Engineering design is a fundamental problem-solving model used by the discipline. Effective problem-solving requires the ability to find and incorporate quality information sources. To teach courses in this area effectively, educators need to understand the information needs of engineers and engineering students and their information gathering habits. This book provides essential guidance for engineering faculty and librarians wishing to better integrate information competencies into their curricular offerings. The treatment of the subject matter is pragmatic, accessible, and engaging. Rather than focusing on specific resources or interfaces, the book adopts a process-driven approach that outlasts changing information technologies. After several chapters introducing the conceptual underpinnings of the book, a sequence of shorter contributions go into more detail about specific steps in the design process and the information needs for those steps. While they are based on the latest research and theory, the emphasis of the chapters is on usable knowledge. Designed to be accessible, they also include illustrative examples drawn from specific engineering sub-disciplines to show how the core concepts can be applied in those situations.




One Small Step


Book Description

Purdue University has played a leading role in providing the engineers who designed, built, tested, and flew the many aircraft and spacecraft that so changed human progress during the 20th century. It is estimated that Purdue has awarded 6% of all BS degrees in aerospace engineering, and 7% of all PhDs in the United States during the past 65 years. The University's alumni have led significant advances in research and development of aerospace technology, have headed major aerospace corporations and government agencies, and have established an amazing record for exploration of space. More than one third of all US manned space flights have had at least one crew member who was a Purdue engineering graduate (including the first and last men to step foot on the moon). The School of Aeronautics & Astronautics was founded as a separate school within the College of Engineering at Purdue University in 1945. The first edition of this book was published in 1995, at the time of the school's 50th anniversary. This corrected and expanded second edition brings the school's illustrious history up to date, and looks to Purdue's future in the sky and in space.




Experimental Characterization of Advanced Composite Materials


Book Description

Over much of the last three decades, the evolution of techniques for characterizing composite materials has struggled to keep up with the advances of composite materials themselves and their broadening areas of application. In recent years, however, much work has been done to consolidate test methods and better understand those being used. Finally,




Engineering in Pre-college Settings


Book Description

In science, technology, engineering, and mathematics (STEM) education in pre-college, engineering is not the silent "e" anymore. There is an accelerated interest in teaching engineering in all grade levels. Structured engineering programs are emerging in schools as well as in out-of-school settings. Over the last ten years, the number of states in the US including engineering in their K-12 standards has tripled, and this trend will continue to grow with the adoption of the Next Generation Science Standards. The interest in pre-college engineering education stems from three different motivations. First, from a workforce pipeline or pathway perspective, researchers and practitioners are interested in understanding precursors, influential and motivational factors, and the progression of engineering thinking. Second, from a general societal perspective, technological literacy and understanding of the role of engineering and technology is becoming increasingly important for the general populace, and it is more imperative to foster this understanding from a younger age. Third, from a STEM integration and education perspective, engineering processes are used as a context to teach science and math concepts. This book addresses each of these motivations and the diverse means used to engage with them.Designed to be a source of background and inspiration for researchers and practitioners alike, this volume includes contributions on policy, synthesis studies, and research studies to catalyze and inform current efforts to improve pre-college engineering education. The book explores teacher learning and practices, as well as how student learning occurs in both formal settings, such as classrooms, and informal settings, such as homes and museums. This volume also includes chapters on assessing design and creativity.







Engineering and Social Justice


Book Description

This book is aimed at engineering academics worldwide, who are attempting to bring social justice into their work and practice, or who would like to but don't know where to start. This is the first book dedicated specifically to University professionals on Engineering and Social Justice, an emerging and exciting area of research and practice. An international team of multidisciplinary authors share their insights and invite and inspire us to reformulate the way we work. Each chapter is based on research and yet presents the outcomes of scholarly studies in a user oriented style. We look at all three areas of an engineering academic's professional role: research, teaching and community engagement. Some of our team have created classes which help students think through their role as engineering practitioners in society. Others are focusing their research on outcomes that are socially just and for client groups who are marginalized and powerless. Yet others are consciously engaging local community groups and exploring ways in which the University might 'serve' communities at home and globally from a post-development perspective. We are additionally concerned with the student cohort and who has access to engineering studies. We take a broad social and ecological justice perspective to critique existing and explore alternative practices. This book is a handbook for any engineering academic, who wishes to develop engineering graduates as well as technologies and practices that are non-oppressive, equitable and engaged. It is also an essential reader for anyone studying in this interdisciplinary juncture of social science and engineering. Scholars using a critical theoretical lens on engineering practice and education, from Science and Technology Studies, History and Philosophy of Engineering, Engineering and Science Education will find this text invaluable.




An Enduring Quest


Book Description

The process of industrialization that began over two hundred years ago is continuing to change the way people work and live, and doing it very rapidly, in places like China and India. At the forefront of this movement is the profession of industrial engineering that develops and applies the technology that drives industrialization. This book describes how industrial engineering evolved over the past two centuries developing methods and principles for the planning, design, and control of production and service systems. The story focuses on the growth of the discipline at Purdue University where it helped shape the university itself and made substantial contributions to the industrialization of America and the world. The story includes colorful and creative people like Frank and Lillian Gilbreth of Cheaper by the Dozen fame. Lillian was the first lady of American engineering as well a founder of Purdue's Industrial Engineering.




Convergence of Knowledge, Technology and Society


Book Description

This volume aims to document the most important worldwide accomplishments in converging knowledge and technology, including converging platforms, methods of convergence, societal implications, and governance in the last ten years. Convergence in knowledge, technology, and society is the accelerating, transformative interaction among seemingly distinct scientific disciplines, technologies, and communities to achieve mutual compatibility, synergism, and integration, and through this process to create added value for societal benefit. It is a movement that is recognized by scientists and thought leaders around the world as having the potential to provide far-reaching solutions to many of today’s complex knowledge, technology, and human development challenges. Four essential and interdependent convergence platforms of human activity are defined in the first part of this report: nanotechnology-biotechnology-information technology and cognitive science (“NBIC”) foundational tools; Earth-scale environmental systems; human-scale activities; and convergence methods for societal-scale activities. The report then presents the main implications of convergence for human physical potential, cognition and communication, productivity and societal outcomes, education and physical infrastructure, sustainability, and innovative and responsible governance. As a whole, the report presents a new model for convergence. To effectively take advantage of this potential, a proactive governance approach is suggested. The study identifies an international opportunity to develop and apply convergence for technological, economic, environmental, and societal benefits. The panel also suggests an opportunity in the United States for implementing a program aimed at focusing disparate R and D energies into a coherent activity - a "Societal Convergence Initiative”. This study received input from leading academic, industry, government, and NGO experts from the United States, Latin America, Europe, Asia, and Australia.




Mechanical Behavior of Materials


Book Description

A balanced mechanics-materials approach and coverage of the latest developments in biomaterials and electronic materials, the new edition of this popular text is the most thorough and modern book available for upper-level undergraduate courses on the mechanical behavior of materials. To ensure that the student gains a thorough understanding the authors present the fundamental mechanisms that operate at micro- and nano-meter level across a wide-range of materials, in a way that is mathematically simple and requires no extensive knowledge of materials. This integrated approach provides a conceptual presentation that shows how the microstructure of a material controls its mechanical behavior, and this is reinforced through extensive use of micrographs and illustrations. New worked examples and exercises help the student test their understanding. Further resources for this title, including lecture slides of select illustrations and solutions for exercises, are available online at www.cambridge.org/97800521866758.