Punctual Hilbert Schemes


Book Description

This paper is about the structure of families of open ideals in the ring [italic]R of power series in two variables. The Hilbert scheme Hilb[italic superscript]n [italic]R parametrizing them is stratified into locally closed subschemes [italic]Z[italic subscript]T, whose dimensions we calculate.




Punctual Hilbert Schemes


Book Description




Hilbert Schemes of Points and Infinite Dimensional Lie Algebras


Book Description

Hilbert schemes, which parametrize subschemes in algebraic varieties, have been extensively studied in algebraic geometry for the last 50 years. The most interesting class of Hilbert schemes are schemes of collections of points (zero-dimensional subschemes) in a smooth algebraic surface . Schemes turn out to be closely related to many areas of mathematics, such as algebraic combinatorics, integrable systems, representation theory, and mathematical physics, among others. This book surveys recent developments of the theory of Hilbert schemes of points on complex surfaces and its interplay with infinite dimensional Lie algebras. It starts with the basics of Hilbert schemes of points and presents in detail an example of Hilbert schemes of points on the projective plane. Then the author turns to the study of cohomology of , including the construction of the action of infinite dimensional Lie algebras on this cohomology, the ring structure of cohomology, equivariant cohomology of and the Gromov–Witten correspondence. The last part of the book presents results about quantum cohomology of and related questions. The book is of interest to graduate students and researchers in algebraic geometry, representation theory, combinatorics, topology, number theory, and theoretical physics.




Lectures on Hilbert Schemes of Points on Surfaces


Book Description

It has been realized that Hilbert schemes originally studied in algebraic geometry are closely related to several branches of mathematics, such as singularities, symplectic geometry, representation theory - even theoretical physics. This book reflects this feature of Hilbert schemes.




Vector Bundles and Representation Theory


Book Description

This volume contains 13 papers from the conference on ``Hilbert Schemes, Vector Bundles and Their Interplay with Representation Theory''. The papers are written by leading mathematicians in algebraic geometry and representation theory and present the latest developments in the field. Among other contributions, the volume includes several very impressive and elegant theorems in representation theory by R. Friedman and J. W. Morgan, convolution on homology groups of moduli spaces of sheaves on K3 surfaces by H. Nakajima, and computation of the $S1$ fixed points in Quot-schemes and mirror principle computations for Grassmanians by S.-T. Yau, et al. The book is of interest to graduate students and researchers in algebraic geometry, representation theory, topology and their applications to high energy physics.




Singular Algebraic Curves


Book Description

Singular algebraic curves have been in the focus of study in algebraic geometry from the very beginning, and till now remain a subject of an active research related to many modern developments in algebraic geometry, symplectic geometry, and tropical geometry. The monograph suggests a unified approach to the geometry of singular algebraic curves on algebraic surfaces and their families, which applies to arbitrary singularities, allows one to treat all main questions concerning the geometry of equisingular families of curves, and, finally, leads to results which can be viewed as the best possible in a reasonable sense. Various methods of the cohomology vanishing theory as well as the patchworking construction with its modifications will be of a special interest for experts in algebraic geometry and singularity theory. The introductory chapters on zero-dimensional schemes and global deformation theory can well serve as a material for special courses and seminars for graduate and post-graduate students.Geometry in general plays a leading role in modern mathematics, and algebraic geometry is the most advanced area of research in geometry. In turn, algebraic curves for more than one century have been the central subject of algebraic geometry both in fundamental theoretic questions and in applications to other fields of mathematics and mathematical physics. Particularly, the local and global study of singular algebraic curves involves a variety of methods and deep ideas from geometry, analysis, algebra, combinatorics and suggests a number of hard classical and newly appeared problems which inspire further development in this research area.




Deformation of Artinian Algebras and Jordan Type


Book Description

This volume contains the proceedings of the AMS-EMS-SMF Special Session on Deformations of Artinian Algebras and Jordan Type, held July 18?22, 2022, at the Universit‚ Grenoble Alpes, Grenoble, France. Articles included are a survey and open problems on deformations and relation to the Hilbert scheme; a survey of commuting nilpotent matrices and their Jordan type; and a survey of Specht ideals and their perfection in the two-rowed case. Other articles treat topics such as the Jordan type of local Artinian algebras, Waring decompositions of ternary forms, questions about Hessians, a geometric approach to Lefschetz properties, deformations of codimension two local Artin rings using Hilbert-Burch matrices, and parametrization of local Artinian algebras in codimension three. Each of the articles brings new results on the boundary of commutative algebra and algebraic geometry.




Algebraic Geometry and Number Theory


Book Description

This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.




Contributions to Algebraic Geometry


Book Description

The articles in this volume are the outcome of the Impanga Conference on Algebraic Geometry in 2010 at the Banach Center in Bedlewo. The following spectrum of topics is covered: K3 surfaces and Enriques surfaces Prym varieties and their moduli invariants of singularities in birational geometry differential forms on singular spaces Minimal Model Program linear systems toric varieties Seshadri and packing constants equivariant cohomology Thom polynomials arithmetic questions The main purpose of the volume is to give comprehensive introductions to the above topics, starting from an elementary level and ending with a discussion of current research. The first four topics are represented by the notes from the mini courses held during the conference. In the articles, the reader will find classical results and methods, as well as modern ones. This book is addressed to researchers and graduate students in algebraic geometry, singularity theory, and algebraic topology. Most of the material in this volume has not yet appeared in book form.




Frobenius Splitting Methods in Geometry and Representation Theory


Book Description

Systematically develops the theory of Frobenius splittings and covers all its major developments. Concise, efficient exposition unfolds from basic introductory material on Frobenius splittings—definitions, properties and examples—to cutting edge research.