Purinergic Signalling in Neuron-Glia Interactions


Book Description

ATP, the intracellular energy source, is also an extremely important cell–cell signalling molecule for a wide variety of cells across evolutionarily diverse organisms. The extracellular biochemistry of ATP and its derivatives is complex, and the multiple membrane receptors that it activates are linked to many intracellular signalling systems. Purinergic signalling affects a diverse range of cellular phenomena, including ion channel function, cytoskeletal dynamics, gene expression, secretion, cell proliferation, differentiation and cell death. Recently, this class of signalling molecules and receptors has been found to mediate communication between neurons and non-neuronal cells (glia) in the central and peripheral nervous systems. Glia are critical for normal brain function, development and response to injury. Neural impulse activity is detected by glia and purinergic signalling is emerging as a major means of integrating functional activity between neurons, glia and vascular cells in the nervous system. These interactions mediate effects of neural activity on the development of the nervous system and in association with injury, neurodegeneration, myelination and cancer. Bringing together contributions from experts in diverse fields, including glial biologists, neurobiologists and specialists in purinergic receptor structure and pharmacology, this book considers how extracellular ATP acts to integrate communication between different types of glia, and between neurons and glia. Beginning with an overview of glia and purinergic signalling, it contains detailed coverage of purine release, receptors and reagents, purinergic signalling in the neural control of glial development, glial involvement in information processing, and discussion of the interactions between neurons and microglia.




Enteric Glia


Book Description

The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography




Purinergic Signalling in Neuron-Glia Interactions


Book Description

ATP, the intracellular energy source, is also an extremely important cell–cell signalling molecule for a wide variety of cells across evolutionarily diverse organisms. The extracellular biochemistry of ATP and its derivatives is complex, and the multiple membrane receptors that it activates are linked to many intracellular signalling systems. Purinergic signalling affects a diverse range of cellular phenomena, including ion channel function, cytoskeletal dynamics, gene expression, secretion, cell proliferation, differentiation and cell death. Recently, this class of signalling molecules and receptors has been found to mediate communication between neurons and non-neuronal cells (glia) in the central and peripheral nervous systems. Glia are critical for normal brain function, development and response to injury. Neural impulse activity is detected by glia and purinergic signalling is emerging as a major means of integrating functional activity between neurons, glia and vascular cells in the nervous system. These interactions mediate effects of neural activity on the development of the nervous system and in association with injury, neurodegeneration, myelination and cancer. Bringing together contributions from experts in diverse fields, including glial biologists, neurobiologists and specialists in purinergic receptor structure and pharmacology, this book considers how extracellular ATP acts to integrate communication between different types of glia, and between neurons and glia. Beginning with an overview of glia and purinergic signalling, it contains detailed coverage of purine release, receptors and reagents, purinergic signalling in the neural control of glial development, glial involvement in information processing, and discussion of the interactions between neurons and microglia.







Receptor-Receptor Interactions


Book Description




Glioma Signaling


Book Description

Gliomas, developing in the brain from the transformed glial cells, are a very special kind of tumor, extremely refractory to conventional treatments. Therefore, for the development of new antitumor strategies, a better understanding of molecular mechanisms responsible for their biology, growth and invasion is still needed. This book is a reference on cellular signaling processes regulating gliomas physiology and invasiveness. The work is focused on the mechanism of nucleotide receptor activation by exogenous nucleotides and formation of complex signaling cascades induced by growth factors, cytokines and cannabinoids. The second edition of the book enriched in new chapters provides a framework explaining how signal transduction elements may modulate numerous genetic and epigenetic alterations, describes the role of local microenvironment in cellular growth, progression and invasion and, in the light of extensive new results, presents perspectives concerning potential targets for gliomas therapy.




Neuroglia


Book Description

Graduate students in neuroanatomy, neurochemistry, neurophysiology, and molecular neurobiology will find the book indispensable. It is also a vital companion for researchers in these fields as well as clinicians in neurology, neurosurgery, neuropathology, neuro-oncology, physiatry, and psychiatry."--BOOK JACKET.




Synaptic Function


Book Description

This book consists of five sections. The first section details methods for analyzing both presynaptic and postsynaptic function and emphasizes the molecular aspects of synapses. It describes ongoing studies of neurotransmitter release, voltage- sensitive ion channels, and electronic transmission at gap junctions. The second section focuses on the growing menagerie of neurotransmitters: their catagorization into chemical families, their relation to ion channels, their modulation by second messenger systems and their role in pharmacologic action. The third section considers the important relationship of transmitter diversity and synaptic types to the behavior of actual cellular networks. All of the studies described in these sections point to the necessity of considering interactions between anatomy, chemistry, physiology and pharmacology if synaptic function is to be understood at any one of these levels of analysis.




Glial Physiology and Pathophysiology


Book Description

Glial Physiology and Pathophysiology provides a comprehensive, advanced text on the biology and pathology of glial cells. Coverae includes: the morphology and interrelationships between glial cells and neurones in different parts of the nervous systems the cellular physiology of the different kinds of glial cells the mechanisms of intra- and inter-cellular signalling in glial networks the mechanisms of glial-neuronal communications the role of glial cells in synaptic plasticity, neuronal survival and development of nervous system the cellular and molecular mechanisms of metabolic neuronal-glial interactions the role of glia in nervous system pathology, including pathology of glial cells and associated diseases - for example, multiple sclerosis, Alzheimer's, Alexander disease and Parkinson's Neuroglia oversee the birth and development of neurones, the establishment of interneuronal connections (the 'connectome'), the maintenance and removal of these inter-neuronal connections, writing of the nervous system components, adult neurogenesis, the energetics of nervous tissue, metabolism of neurotransmitters, regulation of ion composition of the interstitial space and many, many more homeostatic functions. This book primes the reader towards the notion that nervous tissue is not divided into more important and less important cells. The nervous tissue functions because of the coherent and concerted action of many different cell types, each contributing to an ultimate output. This reaches its zenith in humans, with the creation of thoughts, underlying acquisition of knowledge, its analysis and synthesis, and contemplating the Universe and our place in it. An up-to-date and fully referenced text on the most numerous cells in the human brain Detailed coverage of the morphology and interrelationships between glial cells and neurones in different parts of the nervous system Describes the role og glial cells in neuropathology Focus boxes highlight key points and summarise important facts Companion website with downloadable figures and slides




Adenosine Receptors in Health and Disease


Book Description

Since their discovery approximately 25 years ago, adenosine receptors have now emerged as important novel molecular targets in disease and drug discovery. These proteins play important roles in the entire spectrum of disease from inflammation to immune suppression. Because of their expression on a number of different cell types and in a number of different organ systems they play important roles in specific diseases, including asthma, rheumatoid arthritis, Parkinson’s disease, multiple sclerosis, Alzheimer’s disease, heart disease, stroke, cancer, sepsis, and obesity. As a result of intense investigations into understanding the molecular structures and pharmacology of these proteins, new molecules have been synthesized that have high specificity for these proteins and are now entering clinical trials. These molecules will define the next new classes of drugs for a number of diseases with unmet medical needs.