Quantum Chromodynamics at High Energy


Book Description

Filling a gap in the current literature, this book is the first entirely dedicated to high energy quantum chromodynamics (QCD) including parton saturation and the color glass condensate (CGC). It presents groundbreaking progress on the subject and describes many problems at the forefront of research, bringing postgraduate students, theorists and interested experimentalists up to date with the current state of research in this field. The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear BFKL and nonlinear BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and an experimental outlook, and present the physics of strong interactions in a universal way, making it useful for physicists from various subcommunities of high energy and nuclear physics, and applicable to processes studied at all high energy accelerators around the world. A selection of color figures is available online at www.cambridge.org/9780521112574.




Quark--Gluon Plasma 3


Book Description

Annotation. Text reviews the major topics in Quark-Gluon Plasma, including: the QCD phase diagram, the transition temperature, equation of state, heavy quark free energies, and thermal modifications of hadron properties. Includes index, references, and appendix. For researchers and practitioners.




QCD and Collider Physics


Book Description

A detailed overview of the physics of high-energy colliders emphasising the role of QCD.




Heavy Flavour Physics


Book Description

The lectures collected in this book present a comprehensive review of the current knowledge of heavy-quark physics, from the points of view of both theory and experiment. Heavy Flavour Physics has accomplished enormous progress during the last few years: the last heavy quark has been discovered and the quality of the collected data on the other relatively lighter quarks has dramatically improved. On the theory side, noticeable progress has been reported on new calculations of decay rates based on various techniques, such as QCD sum rules, heavy-quark mass expansion and lattice QCD. The theory of heavy quark production is constantly improving and awaiting new results. Nevertheless there are strong reasons to believe that the Standard Model of High Energy Physics is incomplete. It exhibits very peculiar patterns for which it offers no explanation. The basic constituents of matter are arranged into three seemingly identical generations or families of quarks and leptons, differing merely in their masses. The pattern in the fermion masses, why they are families and why there are three of them is not yet understood. Furthermore it is known that at least within the standard model there is an intimate connection between the replication of families and the gateway of CP violation, in addition, the latter phenomenon is a crucial ingredient in explaining why our universe is made up almost exclusively of matter rather than being more or less matter-antimatter symmetric. How and to what extent can Heavy Flavour Physics impact on these questions? Does it offer novel windows onto New Physics beyond the Standard Model in general and onto new symmetries, such as Supersymmetry in particular? These questions constitute the central theme of this book. The material treated in this publication may serve as reference for the segment of the high-energy community actively engaged in heavy-quark physics.




Heavy Flavours


Book Description

This volume is a collection of review articles on the most outstanding topics in heavy flavour physics. All the authors have made significant contributions to this field. The book reviews in detail the theoretical structure of heavy flavour physics within the Standard Model and its confrontation with existing experimental data.The physics of the top quark and of the Higgs play an important role in this volume. Beginning with radiative electroweak corrections and their impressive tests at LEP and hadron colliders, the book summarizes the present status of quark mixing, CP violation and rare decays. The dynamics of exclusive D- and B-meson decays, the τ-lepton physics and the newly discovered heavy quark symmetries are discussed in detail. The impact of strong interactions on weak decays is clearly visible in many articles. The physics of heavy flavours at LEP, HERA and hadron colliders constitutes an important part of the book. Another significant topic is the possible role of heavy flavours in the spontaneous symmetry breaking of gauge symmetries. Finally the most recent advances in lattice calculations of the properties of heavy flavours and the lattice studies of the dynamics of heavy flavours are presented.




Heavy Quark Physics


Book Description




Top Quark, Heavy Flavor Physics And Symmetry Breaking, The - Proceedings Of The Xxiii International Meeting On Fundamental Physics


Book Description

This meeting discussed the experimental results and theoretical aspects in the field of high energy physics, with special reference to the top quark observation, heavy flavor physics and symmetry-breaking mechanisms. The major topics are developed in a series of course lectures.




Heavy Flavours and High-Energy Collisions in the 1–100 TeV Range


Book Description

The present volume is based on the proceedings of the 6th and 7th INFN ELOISATRON project workshops, held at the Centro di Cultura Scientifica "Et tore Majorana" CCSEM, Erice-Trapani, Sicily, Italy, in the period June 10-27, 1988. The topics of the two workshops were, respectively: - Heavy Flavours: Status and Perspectives, and - Novel Features of High Energy Collisions in 1-100 TeV Region. They were attended by sixty-three physicists. The two workshops were followed by a meeting of the INFN ELOISATRON working group, also held at the CCSEM in the period October 7-15, 1988 in which twenty-five physicists participated. Since there was quite a bit of overlap among speakers, participants and the topics covered at the three meetings, we have decided to issue ajoint proceeding, with the first part entitled: Heavy Flavour Physics, and the second: High Energy Physics with 1-100 Te V Proton Beams. Some of the reports included in this volume have been contributed by the INFN ELOISATRON working group members. The first. part of these proceedings deals mostly with the presentation and inter pretation of results in t.he so-called fiavour physics sector. New results, which have become available in the last three years from experiments involving kaons, charmed and beauty hadrons, and searches for the still missing top quark at the present and fothcoming colliders are topics of major interest. here. The contributions in this part are organized in three categories: Experimental Results, Theoretical Interpretation, and Future Directions.




Introduction to High Energy Physics


Book Description

This highly-regarded text provides a comprehensive introduction to modern particle physics. Extensively rewritten and updated, this 4th edition includes developments in elementary particle physics, as well as its connections with cosmology and astrophysics. As in previous editions, the balance between experiment and theory is continually emphasised. The stress is on the phenomenological approach and basic theoretical concepts rather than rigorous mathematical detail. Short descriptions are given of some of the key experiments in the field, and how they have influenced our thinking. Although most of the material is presented in the context of the Standard Model of quarks and leptons, the shortcomings of this model and new physics beyond its compass (such as supersymmetry, neutrino mass and oscillations, GUTs and superstrings) are also discussed. The text includes many problems and a detailed and annotated further reading list.




Foundations of Perturbative QCD


Book Description

Giving an accurate account of the concepts, theorems and their justification, this book is a systematic treatment of perturbative QCD. It relates the concepts to experimental data, giving strong motivations for the methods. Ideal for graduate students starting their work in high-energy physics, it will also interest experienced researchers.