Quantitative Genetics and Breeding Methods in Autopolyploid Plants


Book Description

This book presents basic information about population genetics, quantitative genetics, breeding methods and creation of new varieties taking into account the particular characteristics of autopolyploidy. A number of results are given as a function of ploidy level, the case of diploidy being considered as a specific case. QTL detection and marker assisted selection are also addressed. This book is intended for researchers working on autopolyploid species, as well as for lecturers and students who want to gain better knowledge of these issues by considering the ploidy level. It will also be valuable to breeders wishing to choose methods for breeding and creating the most adapted varieties.







Plant Breeding


Book Description

This book describes the experimental and analytical methodologies available for the genetical analysis of qualitative, quasi-quantitative and quantitative traits and its applications in practical plant breeding and evolution. Models for studying quantitative genetic variation following Birmingham and Edinburgh notations are described. The statistics used is simple and systematic so that the reader will have no difficulty in solving problems in plant genetics. It describes the genetic principles and provides breeding procedures underlying various breeding methods for manipulating qualitative, quasi-quantitative and quantitative traits. It takes into account the latest developments in breeding methodologies including dihaiploidy and apomixis, applications of tissue culture for plant breeding use, genetic engineering for production of transgenics and hybrids, and molecular marker technologies in the analysis of quantitative trait loci, marker assisted selection, evolution and conservation of genetic resources. This book will be useful for undergraduates, postgraduates, teachers and researchers working in the field of genetics and plant breeding.




Quantitative and Ecological Aspects of Plant Breeding


Book Description

Latest figures suggest that approximately 20% of the world's population of six billion is malnourished because of food shortages and inadequate distrib ution systems. To make matters worse, it is estimated that some 75 billion metric tons of soil are removed annually from the land by wind and soil ero sion, much of it from agricultural land, which is thereby rendered unsuitable for agricultural purposes. Moreover, out of a total land area under cultivation 9 6 of approximately 1. 5 x 10 ha, some 12 x 10 ha of arable land are destroyed and abandoned worldwide each year because of unsustainable agricultural practices. Add to this the fact that the world population is increasing at the rate of a quarter of a million per day, and the enormity of the task ahead becomes apparent. To quote the eminent wheat breeder E. R. Sears, It seems clear that plant geneticists can look forward to an expanded role in the 21st century, particularly in relation to plant improvement. The suc cess of these efforts may go a long way towards determining whether the world's increasing billions of humans will be adequately fed. Food for an ever-increasing population will have to be produced not only from an ever-diminishing, but from what will become an ever-deteriorating land resource unless justifiable environmental concerns are taken into account.




Wild Germplasm for Genetic Improvement in Crop Plants


Book Description

Wild Germplasm for Genetic Improvement in Crop Plants addresses the need for an integrated reference on a wide variety of crop plants, facilitating comparison and contrast, as well as providing relevant relationships for future research and development. The book presents the genetic and natural history value of wild relatives, covers what wild relatives exist, explores the existing knowledge regarding specific relatives and the research surrounding them and identifies knowledge gaps. As understanding the role of crop wild relatives in plant breeding expands the genetic pool for abiotic and biotic stress resistance, this is an ideal reference on this important topic. - Provides a single-volume resource to important crops for accessible comparison and research - Explores both conventional and molecular approaches to breeding for targeted traits and allows for expanded genetic variability - Guides the development of hybrids for germplasm with increased tolerance to biotic and abiotic stresses







Molecular Plant Breeding


Book Description

Recent advances in plant genomics and molecular biology have revolutionized our understanding of plant genetics, providing new opportunities for more efficient and controllable plant breeding. Successful techniques require a solid understanding of the underlying molecular biology as well as experience in applied plant breeding. Bridging the gap between developments in biotechnology and its applications in plant improvement, Molecular Plant Breeding provides an integrative overview of issues from basic theories to their applications to crop improvement including molecular marker technology, gene mapping, genetic transformation, quantitative genetics, and breeding methodology.