Quantitative Landslide Hazard Assessment with Remote Sensing Observations and Statistical Modelling


Book Description

The analysis of landslide inventories is the basis for quantitative hazard assessment. Landslide inventory maps are prepared using conventional methods (field surveys, visual interpretation of aerial photographs) and new remote sensing techniques. One of the most promising techniques for landslide detection and mapping is related to the measurement of the ground deformation by satellite radar interferometry (InSAR).This doctoral thesis is dedicated to the preparation of a multi-date inventory, from multi-source data, including InSAR, for a quantitative assessment of landslide hazard. The methods associate the analysis of Earth Observation products and statistical modelling for the characterization of landslide hazard in a rural and mountainous region of the South French Alps. They have been developed at the slope (1:5000-1:2000) and the regional (1:25.000-1:10.000) scales. For the creation of a multi-date inventory, this study developed a combined interpretation of time series of SAR images, aerial photographs, geomorphological maps, historical reports and field surveys. At the slope-scale, a geomorphologically-guided methodology using InSAR was proposed to identify landslide displacement patterns and measure their kinematic evolution. At regional scale, spatio-temporal distribution of landslides is characterised and hazard is assessed by computing spatial and temporal probabilities of occurrence for a given intensity of the phenomena. The spatial occurrence is evaluated using a multivariate model (logistic regression). The temporal occurrence of landslide is estimated with a Poisson probability model to compute exceedance probabilities for several return periods. Different mapping units were used in the modelling, and their influence on the results is discussed. Analysis of landslide hazard is then proposed for some particular hotspots. Relationships between landslide (re)activations and triggering factors are envisaged.




Quantitative Landslide Hazard Assessment in Regional Scale Using Statistical Modeling Techniques


Book Description

In this research study, a new probabilistic methodology for landslide hazard assessment in regional scale using Copula modeling technique is presented. In spite of the existing approaches, this methodology takes the possibility of dependence between landslide hazard components into account; and aims at creating a regional slope failure hazard map more precisely. Copula modeling technique as a widely accepted statistical approach is integrated with the hazard assessment concept to establish the dependence model between "landslide magnitude", "landslide frequency" and "landslide location" elements. This model makes us able to evaluate the conditional probability of occurrence of a landslide with a magnitude larger than an arbitrarily amount within a specific time period and at a given location. Part of the Seattle, WA area was selected to evaluate the competence of the presented method. Based on the results, the mean success rate of the presented model in predicting landslide occurrence is 90% on average; while the success rate is only 63% when these hazard elements were treated as mutually independent. Also, Seismic-induced landslides are one of threatening effects of earthquakes around the world that damage structures, utilities, and cause human loss. Therefore, predicting the areas where significant earthquake triggered hazard exists is a fundamental question that needs to be addressed by seismic hazard assessment techniques. The current methods used to assess seismic landslide hazard mostly ignore the uncertainty in the prediction of sliding displacement, or lack the use of comprehensive field observations of landslide and earthquake records. Therefore, a new probabilistic method is proposed in which the Newmark displacement index, the earthquake intensity, and the associated spatial factors are integrated into a multivariate Copula-based probabilistic function. This model is capable of predicting the sliding displacement index (Dn) that exceeds a threshold value for a specific hazard level in a regional scale. A quadrangle in Northridge area in Northern California having a large landslide database was selected as the study area. The final map indicates the sliding displacements in mapping units for the hazard level of 10% probability of exceedance in 50 years. Furthermore, to reduce human losses and damages to properties due to debris flows runout in many mountainous areas, a reliable prediction method is necessary. Since the existing runout estimation approaches require initial parameters such as volume, depth of moving mass and velocity that are involved with uncertainty and are often difficult to estimate, development of a probabilistic methodology for preliminary runout estimate is precious. Thus, we developed an empirical-statistical model that provides the runout distance prediction based on the average slope angle of the flow path. This model was developed within the corridor of the coastal bluffs along Puget Sound in Washington State. The robustness of this model was tested by applying it to 76 debris-flow events not used in its development. The obtained prediction rates of 92.2% for pre-occurred and 11.7% for non-occurred debris flow locations showed that the model results are consistent with the real debris-flow inventory database.







Laser Scanning Applications in Landslide Assessment


Book Description

This book is related to various applications of laser scanning in landslide assessment. Landslide detection approaches, susceptibility, hazard, vulnerability assessment and various modeling techniques are presented. Optimization of landslide conditioning parameters and use of heuristic, statistical, data mining approaches, their advantages and their relationship with landslide risk assessment are discussed in detail. The book contains scanning data in tropical forests; its indicators, assessment, modeling and implementation. Additionally, debris flow modeling and analysis including source of debris flow identification and rockfall hazard assessment are also presented.




Geoinformatics and Modelling of Landslide Susceptibility and Risk


Book Description

This book discusses various statistical models and their implications for developing landslide susceptibility and risk zonation maps. It also presents a range of statistical techniques, i.e. bivariate and multivariate statistical models and machine learning models, as well as multi-criteria evaluation, pseudo-quantitative and probabilistic approaches. As such, it provides methods and techniques for RS & GIS-based models in spatial distribution for all those engaged in the preparation and development of projects, research, training courses and postgraduate studies. Further, the book offers a valuable resource for students using RS & GIS techniques in their studies.




Landslides


Book Description

Landslides - Investigation and Monitoring offers a comprehensive overview of recent developments in the field of mass movements and landslide hazards. Chapter authors use in situ measurements, modeling, and remotely sensed data and methods to study landslides. This book provides a thorough overview of the latest efforts by international researchers on landslides and opens new possible research directions for further novel developments.




Landslide Hazard and Risk


Book Description

With the increasing need to take an holistic view of landslide hazard and risk, this book overviews the concept of risk research and addresses the sociological and psychological issues resulting from landslides. Its integrated approach offers understanding and ability for concerned organisations, landowners, land managers, insurance companies and researchers to develop risk management solutions. Global case studies illustrate a variety of integrated approaches, and a concluding section provides specifications and contexts for the next generation of process models.







Statistical Approaches for Landslide Susceptibility Assessment and Prediction


Book Description

This book focuses on the spatial distribution of landslide hazards of the Darjeeling Himalayas. Knowledge driven methods and statistical techniques such as frequency ratio model (FRM), information value model (IVM), logistic regression model (LRM), index overlay model (IOM), certainty factor model (CFM), analytical hierarchy process (AHP), artificial neural network model (ANN), and fuzzy logic have been adopted to identify landslide susceptibility. In addition, a comparison between various statistical models were made using success rate cure (SRC) and it was found that artificial neural network model (ANN), certainty factor model (CFM) and frequency ratio based fuzzy logic approach are the most reliable statistical techniques in the assessment and prediction of landslide susceptibility in the Darjeeling Himalayas. The study identified very high, high, moderate, low and very low landslide susceptibility locations to take site-specific management options as well as to ensure developmental activities in theDarjeeling Himalayas. Particular attention is given to the assessment of various geomorphic, geotectonic and geohydrologic attributes that help to understand the role of different factors and corresponding classes in landslides, to apply different models, and to monitor and predict landslides. The use of various statistical and physical models to estimate landslide susceptibility is also discussed. The causes, mechanisms and types of landslides and their destructive character are elaborated in the book. Researchers interested in applying statistical tools for hazard zonation purposes will find the book appealing.




Landslide Risk Assessment


Book Description

Over the past decade there has been a gradual shift away from simply relying on engineering solutions to individual landslide problems, to the use of a variety of strategies to manage the problems over a broad area. Such alternative strategies include the use of building codes, land use planning controls, preventing water leakage, early warning systems and insurance schemes.This book addresses these developments and provides a multidisciplinary perspective on landslide management.