Quantitative Process Control Theory


Book Description

Quantitative Process Control Theory explains how to solve industrial system problems using a novel control system design theory. This easy-to-use theory does not require designers to choose a weighting function and enables the controllers to be designed or tuned for quantitative engineering performance indices such as overshoot.In each chapter, a s




Adaptive Control Approach for Software Quality Improvement


Book Description

This book focuses on the topic of improving software quality using adaptive control approaches. As software systems grow in complexity, some of the central challenges include their ability to self-manage and adapt at run time, responding to changing user needs and environments, faults, and vulnerabilities. Control theory approaches presented in the book provide some of the answers to these challenges. The book weaves together diverse research topics (such as requirements engineering, software development processes, pervasive and autonomic computing, service-oriented architectures, on-line adaptation of software behavior, testing and QoS control) into a coherent whole. Written by world-renowned experts, this book is truly a noteworthy and authoritative reference for students, researchers and practitioners to better understand how the adaptive control approach can be applied to improve the quality of software systems. Book chapters also outline future theoretical and experimental challenges for researchers in this area.




Feedback Control Theory


Book Description

An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.




Identification and Classical Control of Linear Multivariable Systems


Book Description

This book trains engineering students to identify multivariable transfer function models and design classical controllers for such systems.




Qualitative Process Theory Using Linguistic Variables


Book Description

8. 5 Summary In this chapter we have identified three basic patterns of influences that lead to ambiguity in the QP analysis of the basic active furnace state. We have then shown how modification of these patterns, by adding equilibrium values and sensitivity annotations on influence arcs, could permit resolu tion of the ambiguities. Finally, we have described in detail the extensions needed to the basic influence resolution algorithm in QP theory to oper ate on these extended descriptions. We have also shown that the modified influence resolution algorithm corrects an error in Forbus' original method for combining influences. We have then presented an extended example in which introduction of equilibrium assumptions eliminates all ambigu ity in the influence resolution deduction. In the next chapter we extend these techniques further, by developing a qualitative perturbation analysis technique that permits us to answer "what ir' control questions; then we extend this technique to obtain quantitative, as well as qualitative, effects of hypothetical control actions. 8.




Networked Control Systems with Intermittent Feedback


Book Description

Networked Control Systems (NCSs) are spatially distributed systems for which the communication between sensors, actuators and controllers is realized by a shared (wired or wireless) communication network. NCSs offer several advantages, such as reduced installation and maintenance costs, as well as greater flexibility, over conventional control systems in which parts of control loops exchange information via dedicated point-to-point connections. The principal goal of this book is to present a coherent and versatile framework applicable to various settings investigated by the authors over the last several years. This framework is applicable to nonlinear time-varying dynamic plants and controllers with delayed dynamics; a large class of static, dynamic, probabilistic and priority-oriented scheduling protocols; delayed, noisy, lossy and intermittent information exchange; decentralized control problems of heterogeneous agents with time-varying directed (not necessarily balanced) communication topologies; state- and output-feedback; off-line and on-line intermittent feedback; optimal intermittent feedback through Approximate Dynamic Programming (ADP) and Reinforcement Learning (RL); and control systems with exogenous disturbances and modeling uncertainties.




Control Theory Tutorial


Book Description

This open access Brief introduces the basic principles of control theory in a concise self-study guide. It complements the classic texts by emphasizing the simple conceptual unity of the subject. A novice can quickly see how and why the different parts fit together. The concepts build slowly and naturally one after another, until the reader soon has a view of the whole. Each concept is illustrated by detailed examples and graphics. The full software code for each example is available, providing the basis for experimenting with various assumptions, learning how to write programs for control analysis, and setting the stage for future research projects. The topics focus on robustness, design trade-offs, and optimality. Most of the book develops classical linear theory. The last part of the book considers robustness with respect to nonlinearity and explicitly nonlinear extensions, as well as advanced topics such as adaptive control and model predictive control. New students, as well as scientists from other backgrounds who want a concise and easy-to-grasp coverage of control theory, will benefit from the emphasis on concepts and broad understanding of the various approaches. Electronic codes for this title can be downloaded from https://extras.springer.com/?query=978-3-319-91707-8




Artificial Intelligence in Industrial Decision Making, Control and Automation


Book Description

This book is concerned with Artificial Intelligence (AI) concepts and techniques as applied to industrial decision making, control and automation problems. The field of AI has been expanded enormously during the last years due to that solid theoretical and application results have accumulated. During the first stage of AI development most workers in the field were content with illustrations showing ideas at work on simple problems. Later, as the field matured, emphasis was turned to demonstrations that showed the capability of AI techniques to handle problems of practical value. Now, we arrived at the stage where researchers and practitioners are actually building AI systems that face real-world and industrial problems. This volume provides a set of twenty four well-selected contributions that deal with the application of AI to such real-life and industrial problems. These contributions are grouped and presented in five parts as follows: Part 1: General Issues Part 2: Intelligent Systems Part 3: Neural Networks in Modelling, Control and Scheduling Part 4: System Diagnostics Part 5: Industrial Robotic, Manufacturing and Organizational Systems Part 1 involves four chapters providing background material and dealing with general issues such as the conceptual integration of qualitative and quantitative models, the treatment of timing problems at system integration, and the investigation of correct reasoning in interactive man-robot systems.




Tensor Product Model Transformation in Polytopic Model-Based Control


Book Description

Tensor Product Model Transformation in Polytopic Model-Based Control offers a new perspective of control system design. Instead of relying solely on the formulation of more effective LMIs, which is the widely adopted approach in existing LMI-related studies, this cutting-edge book calls for a systematic modification and reshaping of the polytopic convex hull to achieve enhanced performance. Varying the convexity of the resulting TP canonical form is a key new feature of the approach. The book concentrates on reducing analytical derivations in the design process, echoing the recent paradigm shift on the acceptance of numerical solution as a valid form of output to control system problems. The salient features of the book include: Presents a new HOSVD-based canonical representation for (qLPV) models that enables trade-offs between approximation accuracy and computation complexity Supports a conceptually new control design methodology by proposing TP model transformation that offers a straightforward way of manipulating different types of convexity to appear in polytopic representation Introduces a numerical transformation that has the advantage of readily accommodating models described by non-conventional modeling and identification approaches, such as neural networks and fuzzy rules Presents a number of practical examples to demonstrate the application of the approach to generate control system design for complex (qLPV) systems and multiple control objectives. The authors’ approach is based on an extended version of singular value decomposition applicable to hyperdimensional tensors. Under the approach, trade-offs between approximation accuracy and computation complexity can be performed through the singular values to be retained in the process. The use of LMIs enables the incorporation of multiple performance objectives into the control design problem and assurance of a solution via convex optimization if feasible. Tensor Product Model Transformation in Polytopic Model-Based Control includes examples and incorporates MATLAB® Toolbox TPtool. It provides a reference guide for graduate students, researchers, engineers, and practitioners who are dealing with nonlinear systems control applications.




Power Engineering and Information Technologies in Technical Objects Control


Book Description

Improved knowledge in the field of technical objects operation and control helps manufacturers to decrease energy consumption and keep construction costs low. Moreover, it helps dealing effectively with environmental problems and switching to renewable forms of energy on the path of sustainable development of the society. The methods and technologies presented in this book will allow to improve the effectiveness of technical objects control and helps achieving safe, economical, high-quality usage of power engineering and information technologies. The book presents recent advances in power engineering, electric drives, transport systems, power electronics, cybersecurity and others. Vital issues of innovative small vehicles with using hydrogen fuel as well as boring rigs and underwater hydraulic transport pipelines are considered. The book offers a fresh look at energy-saving and energy efficiency in industry, new ideas in information technologies, paying much attention to interdisciplinary specification of the results obtained.