Hydrogeology and Groundwater Modeling


Book Description

Quantitative Solutions in Hydrogeology and Groundwater Modeling addresses and solves a variety of questions and problems from hydrogeological practice. It includes major aspects of quantitative groundwater evaluation, from basic laboratory determination of hydrogeological parameters to complex analytical calculations and modeling for engineering purposes. Groundwater modeling is a strong trend in hydrogeology. Recent years have seen the rapid development of sophisticated and powerful groundwater models, along with a decrease in the use of the more mathematically demanding analytical quantitative solutions. Quantitative Solutions in Hydrogeology and Groundwater Modeling avoids this conflict by explaining both modeling and mathematical solutions in detail.







Hydrogeology and Groundwater Modeling, Second Edition


Book Description

Coupling the basics of hygrogeology with analytical and numerical modeling methods, Hydrogeology and Groundwater Modeling, Second Edition provides detailed coverage of both theory and practice. Written by a leading hydrogeologist who has consulted for industry and environmental agencies and taught at major universities around the world, this unique book fills a gap in the groundwater hydrogeology literature. With more than 40 real-world examples, the book is a source for clear, easy-to-understand, and step-by-step quantitative groundwater evaluation and contaminant fate and transport analysis, from basic laboratory determination to complex analytical calculations and computer modeling. It provides more than 400 drawings, graphs, and photographs, and a variety of useful tables of all key groundwater parameters, as well as lucid, straightforward answers to common hydrogeological problems. Reflecting nearly ten years of new scholarship since the publication of the bestselling first edition, this second edition is wider in focus with added and updated examples, figures, and problems, yet still provides information in the author's trademark, user-friendly style. No other book offers such carefully selected examples and clear, elegantly explained solutions. The inclusion of step-by-step solutions to real problems builds a knowledge base for understanding and solving groundwater issues.




Hydrogeology and Groundwater Modeling


Book Description

Coupling the basics of hygrogeology with analytical and numerical modeling methods, Hydrogeology and Groundwater Modeling, Second Edition provides detailed coverage of both theory and practice. Written by a leading hydrogeologist who has consulted for industry and environmental agencies and taught at major universities around the world, this unique book fills a gap in the groundwater hydrogeology literature. With more than 40 real-world examples, the book is a source for clear, easy-to-understand, and step-by-step quantitative groundwater evaluation and contaminant fate and transport analysis, from basic laboratory determination to complex analytical calculations and computer modeling. It provides more than 400 drawings, graphs, and photographs, and a variety of useful tables of all key groundwater parameters, as well as lucid, straightforward answers to common hydrogeological problems.Reflecting nearly ten years of new scholarship since the publication of the bestselling first edition, this second edition is wider in focus with added and updated examples, figures, and problems, yet still provides information in the author's trademark, user-friendly style. No other book offers such carefully selected examples and clear, elegantly explained solutions. The inclusion of step-by-step solutions to real problems builds a knowledge base for understanding and solving groundwater issues.




Construction Dewatering and Groundwater Control


Book Description

The most up-to-date guide to construction dewatering and groundwater control In the past dozen years, the methods of analyzing and treating groundwater conditions have vastly improved. The Third Edition of Construction Dewatering and Groundwater Control, reflecting the most current technology and practices, is a timely and much-needed overview of this rapidly changing field. Illustrated with hundreds of new figures and photographs and including numerous detailed case histories, the Third Edition of Construction Dewatering and Groundwater Control is a comprehensive and valuable reference for both students and practicing engineers alike. Drawing on real-world experience, the authors lead the reader through all facets of the theory and practice of this fascinating and often complex engineering discipline. Discussion includes: Dozens of case histories demonstrating various groundwater control practices and lessons learned in groundwater control and work performed Detailed methods of controlling groundwater by use of conventional dewatering methods as well as vertical barrier, grouted cutoff, and frozen ground techniques Contracting practices and conflict resolution methods that will help minimize disputes Alternatives and effective practices for handling and treating contaminated groundwater Innovations in equipment and materials that improve the performance and efficiency of groundwater control systems Practices and procedures for success in artificial recharge Groundwater modeling to simulate and plan dewatering projects Inclusion of dual U.S. customary and metric units throughout Construction Dewatering and Groundwater Control is an indispensable tool for all engineering and construction professionals searching for the most up-to-date coverage of groundwater control for various purposes, the modern ways to identify and analyze site-specific situations, and the modern tools available to control them.




Quantitative Hydrogeology


Book Description

This book attempts to combine two separate themes: a description of one of the links in the chain of the water cycle inside the earth's crust i.e., the subsurface flow; and the quantification of the various types of this flow, obtained by applying the principles of fluid mechanics in porous media. The first part is the more descriptive, and geological of the two. It deals with the concept of water resources, which then leads us on to other links in the cycle: rainfall, infiltration, evaporation: runoff, and surface water resources. The second part is necessary to quantify groundwater resources. It points the way to other applications, such as solutions to civil engineering problems including drainage and compaction; and transport problems in porous media, including aquifer pollution by miscible fluids, multiphase flow of immiscible fluids, and heat transfer in porous media, i.e., geothermal problems. However, the qualitative and the quantitative aspects are not treated separately but combined and blended together, just as geology and hydrology are woven together in hydrogeology.




Applied Mathematics in Hydrogeology


Book Description

As introduced in Dr. Lee's 10-week class, Applied Mathematics in Hydrogeology is written for professionals and graduate students who have a keen interest in the application of mathematics in hydrogeology. Its first seven chapters cover analytical solutions for problems commonly encountered in the study of quantitative hydrogeology, while the final three chapters focus on solving linear simultaneous equations, finite element analysis, and inversion for parameter determination. Dr. Lee provides various equation-solving methods that are of interest to hydrogeologists, geophysicists, soil scientists, and civil engineers, as well as applied physicists and mathematicians. In the classroom, this same information will help students realize how familiar equations in hydrogeology are derived-an important step toward development of a student's own mathematical models. Unlike other applied mathematics books that are structured according to systematic methodology, Applied Mathematics in Hydrogeology emphasizes equation-solving methods according to topics. Hydrogeological problems and governing differential equations are introduced, including hydraulic responses to pumping in confined and unconfined aquifers, as well as transport of heat and solute in flowing groundwater.




Hydrogeological Conceptual Site Models


Book Description

A reference for students, researchers, and environmental professionals, Hydrogeological Conceptual Site Models: Data Analysis and Visualization explains how to develop effective conceptual site models, perform advanced spatial data analysis, and generate informative graphics for applications in hydrogeology and groundwater remediation. Written by expert practitioners, this full-color book illustrates how fundamental hydrogeological concepts are translated into quantitative, high-resolution computer visualizations. In addition, the authors discuss topics not typically covered in conventional textbooks, including GIS technology and the relationship between conceptual site models and environmental policy. Advanced Methods for Data Analysis and Visualization Featuring more than 500 color illustrations, this unique and visually powerful book outlines the required elements of a conceptual site model and provides numerous examples of supporting charts, cross-sections, maps, and 3D graphics. The authors describe advanced analytical methods such as geospatial processing, kriging, and groundwater modeling through practical real-life examples. They also present numerous case studies in groundwater supply and remediation to help explain key engineering design concepts. Data-Driven Assessments of Groundwater Management Policy The authors tackle controversial topics, ranging from technical impracticability of groundwater remediation to sustainable management of groundwater resources. They encourage discussion and independent thought about how current environmental policies and practices can evolve to achieve better outcomes at less cost to society. Practical Strategies for Communicating Your Findings to the General Public While the book is technical in nature, equations and advanced theory are kept to a minimum. The text focuses on practical strategies to help you create easy-to-understand data tables, graphs, maps, and illustrations for technical and nontechnical audiences alike. A companion DVD includes animations, reference material, modeling software, and more.




Groundwater Hydrology


Book Description

Groundwater is a vital source of water throughout the world. As the number of groundwater investigations increase, it is important to understand how to develop comprehensive quantified conceptual models and appreciate the basis of analytical solutions or numerical methods of modelling groundwater flow. Groundwater Hydrology: Conceptual and Computational Models describes advances in both conceptual and numerical modelling. It gives insights into the interpretation of field information, the development of conceptual models, the use of computational models based on analytical and numerical techniques, the assessment of the adequacy of models, and the use of computational models for predictive purposes. It focuses on the study of groundwater flow problems and a thorough analysis of real practical field case studies. It is divided into three parts: * Part I deals with the basic principles, including a summary of mathematical descriptions of groundwater flow, recharge estimation using soil moisture balance techniques, and extensive studies of groundwater-surface water interactions. * Part II focuses on the concepts and methods of analysis for radial flow to boreholes including topics such as large diameter wells, multi-layered aquifer systems, aquitard storage and the prediction of long-term yield. * Part III examines regional groundwater flow including situations when vertical flows are important or transmissivities change with saturated depth. Suitable for practising engineers, hydrogeologists, researchers in groundwater and irrigation, mathematical modellers, groundwater scientists, and water resource specialists. Appropriate for upper level undergraduates and MSc students in Departments of Civil Engineering, Environmental Engineering, Earth Science and Physical Geography. It would also be useful for hydrologists, civil engineers, physical geographers, agricultural engineers, consultancy firms involved in water resource projects, and overseas development workers.




Design Hydrology and Sedimentology for Small Catchments


Book Description

The Clean Water Act, with its emphasis on storm water and sediment control in urban areas, has created a compelling need for information in small-catchment hydrology. Design Hydrology and Sedimentology for Small Catchments provides the basic information and techniques required for understanding and implementing design systems to control runoff, erosion, and sedimentation. It will be especially useful to those involved in urban and industrial planning anddevelopment, surface mining activities, storm water management, sediment control, and environmental management. This class-tested text, which presents many solved problems throughout as well as solutions at the end of each chapter, is suitable for undergraduate, graduate, and continuing education courses. In addition, practicing professionals will find it a valuable reference. Anderson/Woessner: APPLIED GROUNDWATER MODELING (1992) Shuirman/Slosson: FORENSIC ENGINEERING (1992) de Marsily: QUANTITATIVE HYDROGEOLOGY (1986) Selley: APPLIED SEDIMENTOLOGY, THIRD EDITION (1988) Huyakorn: COMPUTATIONAL METHODS IN SUBSURFACE FLOW (1986) Pinder: FINITE ELEMENT MODELING IN SURFACE AND SUBSURFACE HYDROLOGY (1977) Key Features * Covers major new improvements and state-of-the-art technologies in sediment control technology * Provides in-depth information on estimating the impact of land-use changes on runoff and flood flows, as well as on estimating erosion and sediment yield from small catchments * Presents superior coverage on design of flood and sediment detention ponds and design of runoff and sediment control measures