Quantitative Zoology


Book Description

This classic focuses on the gathering, handling, and interpretation of numerical data from zoological investigations. Contents include types and properties of numerical data, mensuration, frequency distributions and grouping, patterns of frequency distributions, measures of central tendency, measures of dispersion and variability, populations and samples, and probability. "Excellent." — Florida Scientist.




Quantitative Zoology


Book Description

This classic focuses on the gathering, handling, and interpretation of numerical data from zoological investigations. Contents include types and properties of numerical data, mensuration, frequency distributions and grouping, patterns of frequency distributions, measures of central tendency, measures of dispersion and variability, populations and samples, and probability. "Excellent." — Florida Scientist.




Quantitative Biology


Book Description

An introduction to the quantitative modeling of biological processes, presenting modeling approaches, methodology, practical algorithms, software tools, and examples of current research. The quantitative modeling of biological processes promises to expand biological research from a science of observation and discovery to one of rigorous prediction and quantitative analysis. The rapidly growing field of quantitative biology seeks to use biology's emerging technological and computational capabilities to model biological processes. This textbook offers an introduction to the theory, methods, and tools of quantitative biology. The book first introduces the foundations of biological modeling, focusing on some of the most widely used formalisms. It then presents essential methodology for model-guided analyses of biological data, covering such methods as network reconstruction, uncertainty quantification, and experimental design; practical algorithms and software packages for modeling biological systems; and specific examples of current quantitative biology research and related specialized methods. Most chapters offer problems, progressing from simple to complex, that test the reader's mastery of such key techniques as deterministic and stochastic simulations and data analysis. Many chapters include snippets of code that can be used to recreate analyses and generate figures related to the text. Examples are presented in the three popular computing languages: Matlab, R, and Python. A variety of online resources supplement the the text. The editors are long-time organizers of the Annual q-bio Summer School, which was founded in 2007. Through the school, the editors have helped to train more than 400 visiting students in Los Alamos, NM, Santa Fe, NM, San Diego, CA, Albuquerque, NM, and Fort Collins, CO. This book is inspired by the school's curricula, and most of the contributors have participated in the school as students, lecturers, or both. Contributors John H. Abel, Roberto Bertolusso, Daniela Besozzi, Michael L. Blinov, Clive G. Bowsher, Fiona A. Chandra, Paolo Cazzaniga, Bryan C. Daniels, Bernie J. Daigle, Jr., Maciej Dobrzynski, Jonathan P. Doye, Brian Drawert, Sean Fancer, Gareth W. Fearnley, Dirk Fey, Zachary Fox, Ramon Grima, Andreas Hellander, Stefan Hellander, David Hofmann, Damian Hernandez, William S. Hlavacek, Jianjun Huang, Tomasz Jetka, Dongya Jia, Mohit Kumar Jolly, Boris N. Kholodenko, Markek Kimmel, Michał Komorowski, Ganhui Lan, Heeseob Lee, Herbert Levine, Leslie M Loew, Jason G. Lomnitz, Ard A. Louis, Grant Lythe, Carmen Molina-París, Ion I. Moraru, Andrew Mugler, Brian Munsky, Joe Natale, Ilya Nemenman, Karol Nienałtowski, Marco S. Nobile, Maria Nowicka, Sarah Olson, Alan S. Perelson, Linda R. Petzold, Sreenivasan Ponnambalam, Arya Pourzanjani, Ruy M. Ribeiro, William Raymond, William Raymond, Herbert M. Sauro, Michael A. Savageau, Abhyudai Singh, James C. Schaff, Boris M. Slepchenko, Thomas R. Sokolowski, Petr Šulc, Andrea Tangherloni, Pieter Rein ten Wolde, Philipp Thomas, Karen Tkach Tuzman, Lev S. Tsimring, Dan Vasilescu, Margaritis Voliotis, Lisa Weber




Zoological Physics


Book Description

This book presents a physicists view of life. The primary life functions of animals, such as eating, growing, reproducing and getting around all depend on motion: Motion of materials through the body, motion of limbs and motion of the entire body through water, air and on land. These activities are driven by internal information stored in the genes or in the brain and by external information transmitted by the senses. This book models these life functions with the tools of physics. It will appeal to all scientists, from the undergraduate level upwards, who are interested in the role played by physics in the animal kingdom.




Quantitative Methods in The Study of Animal behavior


Book Description

Quantitative Methods in the Study of Animal Behavior covers a symposium on quantitative methods in behavior. In this book, mathematics is used in two ways – statistical approaches (techniques that describe the main patterns and variability of behavior patterns) and model building. Composed of six chapters, the book opens with a discussion on the three areas of classical ethology – social dominance, behavioral taxonomy, and behavioral variability. The following chapter focuses on the information theory as an ethological tool. In Chapter 3, application of multivariate analyses to diverse ethological data is discussed. The next part of the book discusses more in detail the animal behavioral patterns, relationships, and sequences. The book is a good reference for various fields such as biological science, marine science, and zoology. Students, teachers, scientists, and researchers interested in the aspects of statistics and patterns in animal behavior can make use of this book as a valuable resource.










Quantitative Paleozoology


Book Description

Quantitative Paleozoology describes and illustrates how the remains of long-dead animals recovered from archaeological and paleontological excavations can be studied and analyzed. The methods range from determining how many animals of each species are represented to determining whether one collection consists of more broken and more burned bones than another. All methods are described and illustrated with data from real collections, while numerous graphs illustrate various quantitative properties.




Science as a Process


Book Description

"Legend is overdue for replacement, and an adequate replacement must attend to the process of science as carefully as Hull has done. I share his vision of a serious account of the social and intellectual dynamics of science that will avoid both the rosy blur of Legend and the facile charms of relativism. . . . Because of [Hull's] deep concern with the ways in which research is actually done, Science as a Process begins an important project in the study of science. It is one of a distinguished series of books, which Hull himself edits."—Philip Kitcher, Nature "In Science as a Process, [David Hull] argues that the tension between cooperation and competition is exactly what makes science so successful. . . . Hull takes an unusual approach to his subject. He applies the rules of evolution in nature to the evolution of science, arguing that the same kinds of forces responsible for shaping the rise and demise of species also act on the development of scientific ideas."—Natalie Angier, New York Times Book Review "By far the most professional and thorough case in favour of an evolutionary philosophy of science ever to have been made. It contains excellent short histories of evolutionary biology and of systematics (the science of classifying living things); an important and original account of modern systematic controversy; a counter-attack against the philosophical critics of evolutionary philosophy; social-psychological evidence, collected by Hull himself, to show that science does have the character demanded by his philosophy; and a philosophical analysis of evolution which is general enough to apply to both biological and historical change."—Mark Ridley, Times Literary Supplement "Hull is primarily interested in how social interactions within the scientific community can help or hinder the process by which new theories and techniques get accepted. . . . The claim that science is a process for selecting out the best new ideas is not a new one, but Hull tells us exactly how scientists go about it, and he is prepared to accept that at least to some extent, the social activities of the scientists promoting a new idea can affect its chances of being accepted."—Peter J. Bowler, Archives of Natural History "I have been doing philosophy of science now for twenty-five years, and whilst I would never have claimed that I knew everything, I felt that I had a really good handle on the nature of science, Again and again, Hull was able to show me just how incomplete my understanding was. . . . Moreover, [Science as a Process] is one of the most compulsively readable books that I have ever encountered."—Michael Ruse, Biology and Philosophy




Molecular and Quantitative Animal Genetics


Book Description

Animal genetics is a foundational discipline in the fields of animal science, animal breeding, and veterinary sciences. While genetics underpins the healthy development and breeding of all living organisms, this is especially true in domestic animals, specifically with respect to breeding for key traits. Molecular and Quantitative Animal Genetics is a new textbook that takes an innovative approach, looking at both quantitative and molecular breeding approaches. The bookprovides a comprehensive introduction to genetic principles and their applications in animal breeding. This text provides a useful overview for those new to the field of animal genetics and breeding, covering a diverse array of topics ranging from population and quantitative genetics to epigenetics and biotechnology. Molecular and Quantitative Animal Genetics will be an important and invaluable educational resource for undergraduate and graduate students and animal agriculture professionals. Divided into six sections pairing fundamental principles with useful applications, the book's comprehensive coverage will make it an ideal fit for students studying animal breeding and genetics at any level.