Quantum Chromodynamics


Book Description

Quantum Chromodynamics is a thorough introduction for students in theoretical physics and scientists needing a reference and exercise book in this field. The book presents the necessary mathematical tools together with many examples and worked problems. In introductory chapters the reader becomes familiar with the hadron spectrum, while the SU(N) symmetry groups and the relativistic field theory are briefly recapitulated; then a discussion of scalar quantum electrodynamics and scattering reactions follow before gauge quark-quark interactions, perturbational QCD, renormalization groups, and tests of pertubational QCD are all treated in detail. Chapters on non-perturbational QCD and quasi-phenomenological applications conclude the text.




Quantum Chromodynamics on the Lattice


Book Description

This introduction to quantum chromodynamics presents the basic concepts and calculations in a clear and didactic style accessible to those new to the field. Readers will find useful methods for obtaining numerical results, including pure gauge theory and quenched spectroscopy.




Quantum Chromodynamics at High Energy


Book Description

This 2012 volume, now OA, is dedicated to high energy quantum chromodynamics including parton saturation and the color glass condensate.




Quantum Chromodynamics


Book Description

Aimed at graduate students and researchers in theoretical physics, this book presents the modern theory of strong interaction: quantum chromodynamics (QCD). The book exposes various perturbative and nonperturbative approaches to the theory, including chiral effective theory, the problems of anomalies, vacuum tunnel transitions, and the problem of divergence of the perturbative series. The QCD sum rules approach is exposed in detail. A great variety of hadronic properties (masses of mesons and baryons, magnetic moments, form factors, quark distributions in hadrons, etc.) have been found using this method. The evolution of hadronic structure functions is presented in detail, together with polarization phenomena. The problem of jets in QCD is treated through theoretical description and experimental observation. The connection with Regge theory is emphasized. The book covers many aspects of theory which are not discussed in other books, such as CET, QCD sum rules, and BFKL. • Provides a deep understanding of various aspects of the modern theory of strong interaction • Presents the general properties of QCD, before exploring perturbative and nonperturbative approaches • Discusses aspects of the theory such as CET, QCD sum rules, and BFKL, which are not covered in other books




From Current Algebra to Quantum Chromodynamics


Book Description

The advent of quantum chromodynamics (QCD) in the early 1970s was one of the most important events in twentieth-century science. This book examines the conceptual steps that were crucial to the rise of QCD, placing them in historical context against the background of debates that were ongoing between the bootstrap approach and composite modeling, and between mathematical and realistic conceptions of quarks. It explains the origins of QCD in current algebra and its development through high-energy experiments, model-building, mathematical analysis and conceptual synthesis. Addressing a range of complex physical, philosophical and historiographical issues in detail, this book will interest graduate students and researchers in physics and in the history and philosophy of science.




The Black Book of Quantum Chromodynamics


Book Description

This title provides an in-depth introduction to the particle physics of current and future experiments at particle accelerators. The text provides the reader with an overview of practically all aspects of the strong interaction necessary to understand and appreciate modern particle phenomenology at the energy frontier.




Lectures on Quantum Chromodynamics


Book Description

Quantum chromodynamics is the fundamental theory of strong interactions. It is a physical theory describing Nature. Lectures on Quantum Chromodynamics concentrates, however, not on the phenomenological aspect of QCD; books with comprehensive coverage of phenomenological issues have been written. What the reader will find in this book is a profound discussion on the theoretical foundations of QCD with emphasis on the nonperturbative formulation of the theory: What is gauge symmetry on the classical and on the quantum level? What is the path integral in field theory? How to define the path integral on the lattice, keeping intact as many symmetries of the continuum theory as possible? What is the QCD vacuum state? What is the effective low energy dynamics of QCD? How do the ITEP sum rules work? What happens if we heat and/or squeeze hadronic matter? Perturbative issues are also discussed: How to calculate Feynman graphs? What is the BRST symmetry? What is the meaning of the renormalization procedure? How to resum infrared and collinear singularities? And so on. The book is an outgrowth of the course of lectures given by the author for graduate students at ITEP in Moscow. Much extra material has been added. Sample Chapter(s). Introduction: Some History (331 KB). Lecture 1.1: Path Ordered Exponentials. Invariant Actions (624 KB). Lecture 1.2: Classical Solutions (266 KB). Lecture 2.1: Topological Charge (329 KB). Lecture 2.2: Explicit Solutions (338 KB). Lecture 3.1: Conventional Approach (330 KB). Lecture 3.2: Euclidean Path Integral (150 KB). Lecture 3.3: Holomorphic Representation (177 KB). Lecture 3.4: Grassmann Dynamic Variables (340 KB). Lecture 4.1: Dirac Quantization Procedure 782 KB). Lecture 4.2: Path Integral on the Lattice (330 KB). Lecture 5.1: Quantum Pendulum (534 KB). Lecture 5.2: Large Gauge Transformations in Non-Abelian Theory (395 KB). Contents: Foundations: YangOCoMills Field; Instantons; Path Integral in Quantum Mechanics; Quantization of Gauge Theories; Perturbation Theory: Diagram Technique in Simple and Complicated Theories; When the Gauge is Fixed OC Regularization and Renormalization; Running Coupling Constant; Weathering Infrared Storms; Collinear Singularities: Theory and Phenomenology; Nonperturbative QCD: Symmetries: Anomalous and Not; Quarks on Euclidean Lattice; Aspects of Chiral Symmetry; Mesoscopic QCD; Fairy QCD; ITEP Sum Rules: The Duality Festival; Hot and Dense QCD; Confinement. Readership: High energy physicists and advanced level graduate students in high energy physics."




Foundations Of Quantum Chromodynamics: An Introduction To Perturbative Methods In Gauge Theories


Book Description

This volume develops the techniques of perturbative QCD in great pedagogical detail starting with field theory. Aside from extensive treatments of the renormalization group technique, the operator product expansion formalism and their applications to short-distance reactions, this book provides a comprehensive introduction to gauge theories. Examples and exercises are provided to amplify the discussions on important topics. This is an ideal textbook on the subject of quantum chromodynamics and is essential for researchers and graduate students in high energy physics, nuclear physics and mathematical physics.




Lattice Quantum Chromodynamics


Book Description

This book provides an overview of the techniques central to lattice quantum chromodynamics, including modern developments. The book has four chapters. The first chapter explains the formulation of quarks and gluons on a Euclidean lattice. The second chapter introduces Monte Carlo methods and details the numerical algorithms to simulate lattice gauge fields. Chapter three explains the mathematical and numerical techniques needed to study quark fields and the computation of quark propagators. The fourth chapter is devoted to the physical observables constructed from lattice fields and explains how to measure them in simulations. The book is aimed at enabling graduate students who are new to the field to carry out explicitly the first steps and prepare them for research in lattice QCD.




Quantum Chromodynamics


Book Description

The third edition of this outstanding volume has been extensively revised and enlarged to cover all new aspects in Quantum chromodynamics. It first reviews relativistic quantum field theory and details scattering theory in the framework of scalar quantum electrodynamics. The book then introduces the gauge theory of quarks and gluons. In addition, more advanced chapters present a through discussion of perturbative and nonperturbative techniques in state-of-the-art QCD. Throughout, worked-out examples provide hands-on experience for students in theoretical physics. Research scientists will also find the book an ideal reference.