Quantum Communication Networks


Book Description

This book provides a tutorial on quantum communication networks. The authors discuss current paradigm shifts in communication networks that are needed to add computing and storage to the simple transport ideas of prevailing networks. They show how these ‘softwarized’ solutions break new grounds to reduce latency and increase resilience. The authors discuss how even though these solutions have inherent problems due to introduced computing latency and energy consumption, the problems can be solved by hybrid classical-quantum communication networks. The book brings together quantum networking, quantum information theory, quantum computing, and quantum simulation.




An Introduction to Quantum Communication Networks


Book Description

With the fast pace of developments in quantum technologies, it is more than ever necessary to make the new generation of students in science and engineering familiar with the key ideas behind such disruptive systems. This book intends to fill such a gap between experts and non-experts in the field by providing the reader with the basic tools needed to understand the latest developments in quantum communications and its future directions. This is not only to expand the audience knowledge but also to attract new talents to this flourishing field. To that end, the book as a whole does not delve into much detail and most often suffices to provide some insight into the problem in hand. The primary users of the book will then be students in science and engineering in their final year of undergraduate studies or early years of their post-graduate programmes.




Quantum Networking


Book Description

Quantum networks build on entanglement and quantum measurement to achieve tasks that are beyond the reach of classical systems. Using quantum effects, we can detect the presence of eavesdroppers, raise the sensitivity of scientific instruments such as telescopes, or teleport quantum data from one location to another. Long-distance entanglement can be used to execute important tasks such as Byzantine agreement and leader election in fewer rounds of communication than classical systems, improving the efficiency of operations that are critical in distributed systems.




Advanced Quantum Communications


Book Description

The book provides an overview of the most advanced quantum informational geometric techniques, which can help quantum communication theorists analyze quantum channels, such as security or additivity properties. Each section addresses an area of major research of quantum information theory and quantum communication networks. The authors present the fundamental theoretical results of quantum information theory, while also presenting the details of advanced quantum ccommunication protocols with clear mathematical and information theoretical background. This book bridges the gap between quantum physics, quantum information theory, and practical engineering.




Quantum State Transfer and Network Engineering


Book Description

Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the engineering of quantum networks are discussed in the framework of various quantum optical and condensed matter systems, emphasizing the interdisciplinary character of the research area. Each chapter is a review of theoretical or experimental achievements on a particular topic, written by leading scientists in the field. The volume aims at both newcomers as well as experienced researchers.




Quantum Computation and Quantum Communication:


Book Description

The field of quantum computing has experienced rapid development and many different experimental and theoretical groups have emerged worldwide.This book presents the key elements of quantum computation and communication theories and their implementation in an easy-to-read manner for readers coming from physics, mathematics and computer science backgrounds. Integrating both theoretical aspects and experimental verifications of developing quantum computers, the author explains why particular mathematical methods, physical models and realistic implementations might provide critical steps towards achieving the final goal - constructing quantum computers and quantum networks. The book serves as an excellent introduction for new researchers and also provides a useful review for specialists in the field




Quantum Communications


Book Description

This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; general formulation of a transmitter–receiver system particular treatment of the most popular quantum communications systems—OOK, PPM, PSK and QAM; more realistic performance evaluation introducing thermal noise and system description with density operators; consideration of scarce existing implementations of quantum communications systems and their difficulties with suggestions for future improvement; and separate treatment of quantum information with discrete and continuous states. Quantum Communications develops the engineering student’s exposure to quantum mechanics and shows physics students that its theories can have practically beneficial application in communications systems. The use of example and exercise questions (together with a downloadable solutions manual for instructors, available from http://extras.springer.com/) will help to make the material presented really sink in for students and invigorate subsequent research.




Quantum Computing and Communications


Book Description

Quantum computers will revolutionize the way telecommunications networks function. Quantum computing holds the promise of solving problems that would be intractable with conventional computers by implementing principles from quantum physics in the development of computer hardware, software and communications equipment. Quantum-assisted computing will be the first step towards full quantum systems, and will cause immense disruption of our traditional networks. The world’s biggest manufacturers are investing large amounts of resources to develop crucial quantum-assisted circuits and devices. Quantum Computing and Communications: Gives an overview of basic quantum computing algorithms and their enhanced versions such as efficient database searching, counting and phase estimation. Introduces quantum-assisted solutions for telecom problems including multi-user detection in mobile systems, routing in IP based networks, and secure ciphering key distribution. Includes an accompanying website featuring exercises (with solution manual) and sample algorithms from the classical telecom world, corresponding quantum-based solutions, bridging the gap between pure theory and engineering practice. This book provides telecommunications engineers, as well as graduate students and researchers in the fields of computer science and telecommunications, with a wide overview of quantum computing & communications and a wealth of essential, practical information.




Quantum Computing and Quantum Communications


Book Description

This book contains selected papers presented at the First NASA International Conference on Quantum Computing and Quantum Communications, QCQC'98, held in Palm Springs, California, USA in February 1998. As the record of the first large-scale meeting entirely devoted to quantum computing and communications, this book is a unique survey of the state-of-the-art in the area. The 43 carefully reviewed papers are organized in topical sections on entanglement and quantum algorithms, quantum cryptography, quantum copying and quantum information theory, quantum error correction and fault-tolerant quantum computing, and embodiments of quantum computers.




Quantum Communication, Computing, and Measurement


Book Description

This volume contains the proceedings of the Third International Conference on Quantum Communication and Measurement. The series of international conferences on quantum communication and measurement was established to encourage scientists working in the interdisciplinary research fields of quantum communication science and technology. The first such conference, organized by C. Benjaballah and O. Hirota under the title "Quantum Aspects of Optical Communication," assembled approximately 80 researchers in Paris in 1990. The second conference, held in Nottingham in 1994, was organized by V. P. Belavkin, R. L. Hudson, and O. Hirota and attracted about 130 participants from 22 countries. The present conference, organized by O. Hirota, A. S. Holevo, C. M. Caves, H. P. Yuen, and L. Accardi, was heldSeptember 25-30, 1996, in Fuji-Hakone Land, Japan, andjnvolved about 120 researchers from 15 countries. The topics at this third conference included the foundations of quantum communi cation and information theory, quantum measurement theory, quantum cryptography and quantum computation, quantum devices and high-precision measurements, gener ation of nonclassical light, and atom optics. Special emphasis was placed on bringing together research workers in experimental and engineering fields of quantum commu nication and quantum computing and theoreticians working in quantum measurement and information theory. Nineteen plenary and parallel sessions and one poster ses sion were organized, at which a total of 82 papers were presented. Interesting and stimulating scientific discussions took place between and after sessions as well as in the evenings.