Quantum Correlations in Field Theory and Integrable Systems


Book Description

This doctoral thesis analytically and numerically examines some of the most important concepts in quantum correlations in low-dimensional physics: entanglement and out-of-equilibrium dynamics. As John Bell once said: "Entanglement expresses the spooky nonlocality inherent to quantum mechanics", and its study not only concerns the foundations of any quantum theory, but also has important applications in quantum information and condensed matter theory, amongst others. The first chapters are devoted to the study of "entanglement entropies", a popular measure of the "quantumness" of a physical system. The main focus of the analysis is the one-dimensional XYZ spin-1/2 chain in equilibrium, an interacting theory which in addition to being integrable also has interesting scaling limits, such as the sine-Gordon field theory. Moving away from equilibrium the subsequent chapters deal with the dynamics of quantum correlators after an instantaneous quantum quench. The emphasis is on two different models and techniques; the transverse field Ising chain is studied using the form-factor approach and the O(3) non-linear sigma model is studied by means of the semi-classical theory. In the final chapter the author highlights an important general result: in the absence of long-range interactions in the final Hamiltonian the dynamics of a quantum system are determined by the same statistical ensemble that describes static correlations.




New Trends In Quantum Integrable Systems - Proceedings Of The Infinite Analysis 09


Book Description

The present volume is the result of the international workshop on New Trends in Quantum Integrable Systems that was held in Kyoto, Japan, from 27 to 31 July 2009. As a continuation of the RIMS Research Project “Method of Algebraic Analysis in Integrable Systems” in 2004, the workshop's aim was to cover exciting new developments that have emerged during the recent years.Collected here are research articles based on the talks presented at the workshop, including the latest results obtained thereafter. The subjects discussed range across diverse areas such as correlation functions of solvable models, integrable models in quantum field theory, conformal field theory, mathematical aspects of Bethe ansatz, special functions and integrable differential/difference equations, representation theory of infinite dimensional algebras, integrable models and combinatorics.Through these topics, the reader can learn about the most recent developments in the field of quantum integrable systems and related areas of mathematical physics.




Quantum Inverse Scattering Method and Correlation Functions


Book Description

The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Go rdon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians.The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results.The book will be essential reading for all mathematical physicists working in field theory and statistical physics.




Quantum Field Theory in Condensed Matter Physics


Book Description

This book is a course in modern quantum field theory as seen through the eyes of a theorist working in condensed matter physics. It contains a gentle introduction to the subject and therefore can be used even by graduate students. The introductory parts include a derivation of the path integral representation, Feynman diagrams and elements of the theory of metals including a discussion of Landau–Fermi liquid theory. In later chapters the discussion gradually turns to more advanced methods used in the theory of strongly correlated systems. The book contains a thorough exposition of such non-perturbative techniques as 1/N-expansion, bosonization (Abelian and non-Abelian), conformal field theory and theory of integrable systems. The book is intended for graduate students, postdoctoral associates and independent researchers working in condensed matter physics.




An Introduction to Integrable Techniques for One-Dimensional Quantum Systems


Book Description

This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture.







Integrable Quantum Field Theories


Book Description

Proceedings of a NATO ARW held in Como, Italy, September 14-19, 1992




Dynamical Systems and Irreversibility


Book Description

Leading research, perspectives, and analysis of dynamical systems and irreversibility Edited by Nobel Prize winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest. Volume 122 collects papers from the XXI Solvay Conference on Physics, dedicated to the exploration of "Dynamical Systems and Irreversibility." Ioannis Antoniou, Deputy Director of the International Solvay Institutes for Physics and Chemistry, edits and assembles this cutting-edge research, including articles such as "Non-Markovian Effects in the Standard Map," "Harmonic Analysis of Unstable Systems," "Age and Age Fluctuations in an Unstable Quantum System," and discussion of many more subjects. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field.




Integrable Systems: From Classical to Quantum


Book Description

This volume presents the papers based upon lectures given at the 1999 Séminaire de Mathémathiques Supérieurs held in Montreal. It includes contributions from many of the most active researchers in the field. This subject has been in a remarkably active state of development throughout the past three decades, resulting in new motivation for study in r s3risingly different directions. Beyond the intrinsic interest in the study of integrable models of many-particle systems, spin chains, lattice and field theory models at both the classical and the quantum level, and completely solvable models in statistical mechanics, there have been new applications in relation to a number of other fields of current interest. These fields include theoretical physics and pure mathematics, for example the Seiberg-Witten approach to supersymmetric Yang-Mills theory, the spectral theory of random matrices, topological models of quantum gravity, conformal field theory, mirror symmetry, quantum cohomology, etc. This collection gives a nice cross-section of the current state of the work in the area of integrable systems which is presented by some of the leading active researchers in this field. The scope and quality of the articles in this volume make this a valuable resource for those interested in an up-to-date introduction and an overview of many of the main areas of study in the theory of integral systems.




Symmetries, Integrable Systems and Representations


Book Description

This volume is the result of two international workshops; Infinite Analysis 11 – Frontier of Integrability – held at University of Tokyo, Japan in July 25th to 29th, 2011, and Symmetries, Integrable Systems and Representations held at Université Claude Bernard Lyon 1, France in December 13th to 16th, 2011. Included are research articles based on the talks presented at the workshops, latest results obtained thereafter, and some review articles. The subjects discussed range across diverse areas such as algebraic geometry, combinatorics, differential equations, integrable systems, representation theory, solvable lattice models and special functions. Through these topics, the reader will find some recent developments in the field of mathematical physics and their interactions with several other domains.