Quantum Dots in Bioanalytical Chemistry and Medicine


Book Description

Quantum dots are proven powerful probes for fluorescence imaging and have distinct properties that give them unique capabilities. Currently, they are being developed for a range of additional applications including the detection of disease, fluorescent assays for drug discovery, single protein tracking and intracellular reporting. Here, the various types of quantum dots are introduced, with the reader being provided with enough information in the text and the references to encourage a new quantum dot user to get started. Including an overview of the significant advancement in the field and discussing applications, the book emphasises how the properties of quantum dots are employed in bioanalytical chemistry. Closing with a prospectus of the future for quantum dots, any researchers and students in bioanalytical chemistry, medicine and clinical biochemistry will find this title useful supplementary reading.




Spectroscopic Analyses


Book Description

The book presents developments and applications of these methods, such as NMR, mass, and others, including their applications in pharmaceutical and biomedical analyses. The book is divided into two sections. The first section covers spectroscopic methods, their applications, and their significance as characterization tools; the second section is dedicated to the applications of spectrophotometric methods in pharmaceutical and biomedical analyses. This book would be useful for students, scholars, and scientists engaged in synthesis, analyses, and applications of materials/polymers.




Application of Quantum Dots in Biology and Medicine


Book Description

This book illustrates various applications of quantum dots (QDs) in the biomedical field and future perspectives. It first introduces the synthesis procedures and fundamental properties of QDs. In addition, the optical detection techniques and toxicologic reviews of QDs are presented. A focus of the book is also on the applications of QDs in cancer therapy, drug delivery, bio-sensing, and targeted molecular therapy. This book is exciting and valuable to a wide variety of readership communities (students, early-stage researchers, and scientists) in the various fields of biology and medicine.




Ternary Quantum Dots


Book Description

Ternary Quantum Dots: Synthesis, Properties, and Applications reviews the latest advances in ternary (I-III-VI) chalcopyrite quantum dots (QDs), along with their synthesis, properties and applications. Sections address the fundamental key concepts of ternary quantum dots, progress in synthesis strategies (i.e., organic and aqueous synthesis), and characterization methods (i.e., transmission electron microscopy, dynamic light scattering, etc.). Properties of ternary quantum dots are comprehensively reviewed, including optical, chemical and physical properties. The factors and mechanisms of the cytotoxicity of ternary quantum dot-based nanomaterials are also described. Since ternary chalcopyrite quantum dots are less toxic and more environmentally benign than conventional binary II-VI chalcogenide quantum dots, they are being investigated to replace conventional quantum dots in a range of applications. Thus, this book reviews QDs in various applications, such as solar cells, photocatalytic, sensors and bio-applications. Reviews fundamental concepts of ternary quantum dots and quantum dot-nanocomposites including the most relevant synthesis strategies, key properties, and characterization techniques Delves into the cytotoxicity of quantum dots looking at the factors and mechanisms that influence cytotoxicity including demonstration of cytotoxicity assays for in vitro and in vivo tests Touches on the many applications of ternary quantum dots including biomedical applications, applications in solar cells, sensing applications, and photocatalytic applications







Biological and Pharmaceutical Applications of Nanomaterials


Book Description

Biological and Pharmaceutical Applications of Nanomaterials presents the findings of cutting-edge research activities in the field of nanomaterials, with a particular emphasis on biological and pharmaceutical applications. Divided into four sections-nanomaterials for drug delivery, antimicrobial nanomaterials, nanomaterials in biosensors, and safet




Surfactant-based Sensors in Chemical and Biochemical Detection


Book Description

Describing the importance of surfactants in electrochemical investigations related to biologically and environmentally vital chemicals, this book charts the progression of highly responsive electrochemical sensors using surfactants as a modifying agent in the sensor field. It provides contributed chapters from respected researchers on information concerning the activity of target molecules and electron transfer kinetics arising at the surface of the fabricated sensor materials. Surfactant-based electrochemical sensors are of great interest in the quest to find low-cost, fast and highly responsive sensing devices and one aim of this book is to help improve the competence and knowledge in this newly emerging interdisciplinary research area. Attracting an audience of students, academics, industrialists and engineers, it will interest researchers seeking to use non-toxic sensors in their detection challenges.




Modern Applications of Quantum Dots


Book Description

Researchers have been examining the properties of quantum dots for a long time. This book describes the modern applications of quantum dots with the help of valuable information. It provides a compilation of various practical applications of quantum dots. The book contains an overview of the thermo-optical characterization of CdSe/ZnS core-shell nanocrystal solutions and also discusses new optical and lasing applications along with a few examples of quantum dot systems for distinct applications in electronics. Examples regarding the usage of this system for biological applications have also been provided. It contains latest research work contributed by researchers and scientists related to this field from across the world, providing the readers with general research like the one conducted in basic sciences like chemistry, medicine, biology and physics with a valuable base text presenting latest research in the field of quantum-dot systems.




Field-effect Transistor Biosensors for Rapid Pathogen Detection


Book Description

Looking to prevent future outbreaks of deadly pathogens by early detection? Infectious diseases continue to be a challenge that necessitates increased precision in detection and integration to achieve accurate diagnosis at the point of care (PoC). Field-effect transistors (FETs) have been investigated widely as biosensors for pathogen detection, with advantages such as label-free and real-time detection capabilities. These biosensors have: a high level of sensitivity, a remarkable capacity for miniaturization, a molecular minimum limit of detection (LoD), and seamless integration with semiconductor technology In this title, we have invited expert scientific researchers to share their experience in this field. This book focuses on the application and possibility of FETs as biosensors, for rapid and real time detection of pathogens that affect human life. The lack of commercially available efficient devices that can be deployed for this task resulted in the recent global spread of the SARS-CoV-19 virus. The book is an attempt to keep interested parties up to date. Aimed at scientists and engineers (researchers, academics, and postgraduate students) who are interested in developing and using BioFET based sensors, the information in this book is crucial to help prevent future outbreaks of pathogens which bring with them significant impacts on human health and wellbeing.




Lab-on-a-chip Devices for Advanced Biomedicines


Book Description

The global miniature devices market is poised to surpass a valuation of $12–$15 billion USD by the year 2030. Lab-on-a-chip (LOC) devices are a vital component of this market. Comprising a network of microchannels, electrical circuits, sensors, and electrodes, LOC is a miniaturized integrated device platform used to streamline day-to-day laboratory functions, run cost-effective clinical analyses and curb the need for centralized instrumentation facilities in remote areas. Compact design, portability, ease of operation, low sample volume, short reaction time, and parallel investigation stand as the pivotal factors driving the widespread acceptance of LOC within the biomedical community. In this book, the Editors meticulously explore LOC through three key ‘Ts’: Theories (microfluidics, microarrays, instrumentation, software); Technologies (additive manufacturing, artificial intelligence, computational thinking, smart consumables, scale-up tactics, and biofouling); and Trends (biomedical analysis, point-of-care diagnostics, personalized healthcare, bioactive synthesis, disease diagnosis, and space applications) This comprehensive text not only provides readers with a thorough understanding of the current advancements in the LOC domain but also offers valuable insights to support the utilization of miniaturized devices for enhanced healthcare practices. Aimed at career researchers looking for instruction in the topic and newcomers to the area, the book is also useful for undergraduate and postgraduate students embarking on new studies or for those interested in reading about the LOC platform.