Quantum Gravity in a Laboratory?


Book Description

The characteristic – Planck – energy scale of quantum gravity makes experimental access to the relevant physics apparently impossible. Nevertheless, low energy experiments linking gravity and the quantum have been undertaken: the Page and Geilker quantum Cavendish experiment, and the Colella-Overhauser-Werner neutron interferometry experiment, for instance. However, neither probes states in which gravity remains in a coherent quantum superposition, unlike – it is claimed – recent proposals. In essence, if two initially unentangled subsystems interacting solely via gravity become entangled, then theorems of quantum mechanics show that gravity cannot be a classical subsystem. There are formidable challenges to such an experiment, but remarkably, tabletop technology into the gravity of very small bodies has advanced to the point that such an experiment might be feasible in the near future. This Element explains the proposal and what it aims to show, highlighting the important ways in which its interpretation is theory-laden.




Beyond Spacetime


Book Description

A collection of essays discussing the philosophy and foundations of quantum gravity. Written by leading philosophers and physicists in the field, chapters cover the important conceptual questions in the search for a quantum theory of gravity, and the current state of understanding among philosophers and physicists.




New Paths Towards Quantum Gravity


Book Description

Aside from the obvious statement that it should be a theory capable of unifying general relativity and quantum field theory, not much is known about the true nature of quantum gravity. New ideas - and there are many of them for this is an exciting field of research - often diverge to a degree where it seems impossible to decide in which of the many possible direction(s) the ongoing developments should be further sustained. The division of the book in two (overlapping) parts reflects the duality between the physical vision and the mathematical construction. The former is represented by tutorial reviews on non-commutative geometry, on space-time discretization and renormalization and on gauge field path integrals. The latter one by lectures on cohomology, on stochastic geometry and on mathematical tools for the effective action in quantum gravity. The book will benefit everyone working or entering the field of quantum gravity research.




Three Roads To Quantum Gravity


Book Description

"It would be hard to imagine a better guide to this difficult subject." -- Scientific American In Three Roads to Quantum Gravity, Lee Smolin provides an accessible overview of the attempts to build a final "theory of everything." He explains in simple terms what scientists are talking about when they say the world is made from exotic entities such as loops, strings, and black holes and tells the fascinating stories behind these discoveries: the rivalries, epiphanies, and intrigues he witnessed firsthand. "Provocative, original, and unsettling." -- The New York Review of Books "An excellent writer, a creative thinker." -- Nature




Experimental Search for Quantum Gravity


Book Description

This book summarizes recent developments in the research area of quantum gravity phenomenology. A series of short and nontechnical essays lays out the prospects of various experimental possibilities and their current status. Finding observational evidence for the quantization of space-time was long thought impossible. In the last decade however, new experimental design and technological advances have changed the research landscape and opened new perspectives on quantum gravity. Formerly dominated by purely theoretical constructions, quantum gravity now has a lively phenomenology to offer. From high precision measurements using macroscopic quantum oscillators to new analysis methods of the cosmic microwave background, no stone is being left unturned in the experimental search for quantum gravity. This book sheds new light on the connection of astroparticle physics with the quantum gravity problem. Gravitational waves and their detection are covered. It illustrates findings from the interconnection between general relativity, black holes and Planck stars. Finally, the return on investment in quantum-gravitation research is illuminated. The book is intended for graduate students and researchers entering the field.







Classical and Quantum Gravity


Book Description

Classical and quantum gravity covers all aspects of gravitational physics and the theory of spacetime. This new book presents topical research in the study of classical and quantum gravity, including the weak field limit of fourth order gravity; the problem of time in quantum gravity; quantum correction and entropy spectrum in different gravity; quantum instability for charged particles on charged Nariai Black Holes and the equivalence of the generalised tetra formalism with the theory of general relativity.




Physics Meets Philosophy at the Planck Scale


Book Description

Was the first book to examine the exciting area of overlap between philosophy and quantum mechanics with chapters by leading experts from around the world.




Gravity-superconductors Interactions


Book Description

"Recent developments in gravity-superconductivity interactions have been summarized by several researchers. If gravitation has to be eventually reconciled with quantum mechanics, the macroscopic quantum character of superconductors might actually matter. T"




Exploring Black Holes


Book Description