Quantum Mechanics in Everyday Life


Book Description

Quantum mechanics is the mathematical foundation for chemistry and physics on the microscopic scale. The energies and interactions between atoms and molecules can be described using the mathematics of matrices and quantized angular momentum. The seemingly esoteric mathematical language and quantum behavior of atoms and molecules have directly led to modern technology such as compact fluorescent bulbs, lasers, the global positioning system (GPS) and magnetic resonance imaging (MRI). Quantum Mechanics in Everyday Life provides an introduction to the language of quantum and leads the reader to a deeper understanding of familiar, widely-used technology at the atomic and molecular level.




Breakfast with Einstein


Book Description

A Sunday Times Book of the Year From the author of the international bestseller How to Teach Quantum Physics to Your Dog Your humble alarm clock, digital cameras, the smell of coffee, the glow of a grill, fibre broadband, smoke detectors… all hold secrets about quantum physics. Beginning at sunrise, Chad Orzel reveals the extraordinary science that underpins the simplest activities we all do every day, from making toast to shopping online. It’s all around us, the wonderful weirdness of quantum – you just have to know where to look.




Schrodinger's Machines


Book Description

In his foreword to Schrödinger's Machines, Paul Davies writes, "The nineteenth century was known as the machine age, the twentieth century will go down in history as the information age. I believe the twenty-first century will be the quantum age." Perhaps the most successful scientific theory in history, quantum mechanics has already ushered in the information age with inventions like the transistor and the laser. In Schrödinger's Machines, renowned quantum physicist Gerard Milburn explores how our ever-increasing ability to manipulate atomic and subatomic processes is turning purely hypothetical situations and concepts (of a truly weird nature) into concrete, practical devices-- resulting in a complete transformation of our world view. Imagine the creation of machines the size of molecules, detectors sensitive enough to pick up the sound of a pin dropping on the other side of the earth, the fabrication of new and exotic materials, and extraordinarily powerful computers that can process information in many alternative realities simultaneously, creating a whole new type of mathematics. This isn't science fiction, but just some of the breathtaking possibilities offered by quantum technology over the next fifty years. Leaving the common sense of Newtonian machines far behind, Schrödinger's Machines is an advance preview of the strange new world ahead. Clearly presented, and with an acute awareness of recent advances in the field, it's indispensable reading for anyone interested in the future.




What Is Real?


Book Description

"A thorough, illuminating exploration of the most consequential controversy raging in modern science." --New York Times Book Review An Editor's Choice, New York Times Book Review Longlisted for PEN/E.O. Wilson Prize for Literary Science Writing Longlisted for Goodreads Choice Award Every physicist agrees quantum mechanics is among humanity's finest scientific achievements. But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's solipsistic and poorly reasoned Copenhagen interpretation. Indeed, questioning it has long meant professional ruin, yet some daring physicists, such as John Bell, David Bohm, and Hugh Everett, persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and the courageous scientists who dared to stand up for truth. "An excellent, accessible account." --Wall Street Journal "Splendid. . . . Deeply detailed research, accompanied by charming anecdotes about the scientists." --Washington Post




Something Deeply Hidden


Book Description

INSTANT NEW YORK TIMES BESTSELLER As you read these words, copies of you are being created. Sean Carroll, theoretical physicist and one of this world’s most celebrated writers on science, rewrites the history of twentieth-century physics. Already hailed as a masterpiece, Something Deeply Hidden shows for the first time that facing up to the essential puzzle of quantum mechanics utterly transforms how we think about space and time. His reconciling of quantum mechanics with Einstein’s theory of relativity changes, well, everything. Most physicists haven’t even recognized the uncomfortable truth: Physics has been in crisis since 1927. Quantum mechanics has always had obvious gaps—which have come to be simply ignored. Science popularizers keep telling us how weird it is, how impossible it is to understand. Academics discourage students from working on the "dead end" of quantum foundations. Putting his professional reputation on the line with this audacious yet entirely reasonable book, Carroll says that the crisis can now come to an end. We just have to accept that there is more than one of us in the universe. There are many, many Sean Carrolls. Many of every one of us. Copies of you are generated thousands of times per second. The Many-Worlds theory of quantum behavior says that every time there is a quantum event, a world splits off with everything in it the same, except in that other world the quantum event didn't happen. Step-by-step in Carroll's uniquely lucid way, he tackles the major objections to this otherworldly revelation until his case is inescapably established. Rarely does a book so fully reorganize how we think about our place in the universe. We are on the threshold of a new understanding—of where we are in the cosmos, and what we are made of.




The Strange World of Quantum Mechanics


Book Description

This is an exceptionally accessible, accurate, and non-technical introduction to quantum mechanics. After briefly summarizing the differences between classical and quantum behaviour, this engaging account considers the Stern-Gerlach experiment and its implications, treats the concepts of probability, and then discusses the Einstein-Podolsky-Rosen paradox and Bell's theorem. Quantal interference and the concept of amplitudes are introduced and the link revealed between probabilities and the interference of amplitudes. Quantal amplitude is employed to describe interference effects. Final chapters explore exciting new developments in quantum computation and cryptography, discover the unexpected behaviour of a quantal bouncing-ball, and tackle the challenge of describing a particle with no position. Thought-provoking problems and suggestions for further reading are included. Suitable for use as a course text, The Strange World of Quantum Mechanics enables students to develop a genuine understanding of the domain of the very small. It will also appeal to general readers seeking intellectual adventure.




Quantum Mechanics in Simple Matrix Form


Book Description

With this text, basic quantum mechanics becomes accessible to undergraduates with no background in mathematics beyond algebra. Includes more than 100 problems and 38 figures. 1986 edition.




Quantum Mechanics


Book Description

Quantum Mechanics: Concepts and Applications provides a clear, balanced and modern introduction to the subject. Written with the student’s background and ability in mind the book takes an innovative approach to quantum mechanics by combining the essential elements of the theory with the practical applications: it is therefore both a textbook and a problem solving book in one self-contained volume. Carefully structured, the book starts with the experimental basis of quantum mechanics and then discusses its mathematical tools. Subsequent chapters cover the formal foundations of the subject, the exact solutions of the Schrödinger equation for one and three dimensional potentials, time-independent and time-dependent approximation methods, and finally, the theory of scattering. The text is richly illustrated throughout with many worked examples and numerous problems with step-by-step solutions designed to help the reader master the machinery of quantum mechanics. The new edition has been completely updated and a solutions manual is available on request. Suitable for senior undergradutate courses and graduate courses.




A Modern Approach to Quantum Mechanics


Book Description

Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics allows lecturers to expose their undergraduates to Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new. Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems it gives students straightfoward examples of the structure of quantum mechanics. When wave mechanics is introduced later, students should perceive it correctly as only one aspect of quantum mechanics and not the core of the subject.




Absolutely Small


Book Description

Absolutely Small presents (and demystifies) the world of quantum science like no book before. Physics is a complex, daunting topic, but it is also deeply satisfying?even thrilling. When liberated from its mathematical underpinnings, physics suddenly becomes accessible to anyone with the curiosity and imagination to explore its beauty. Science without math? It’s not that unusual. For example, we can understand the concept of gravity without solving a single equation. So for all those who may have pondered what makes blueberries blue and strawberries red; for those who have wondered if sound really travels in waves; and why light behaves so differently from any other phenomenon in the universe, it’s all a matter of quantum physics. This book explores in considerable depth scientific concepts using examples from everyday life, such as: particles of light, probability, states of matter, what makes greenhouse gases bad Challenging without being intimidating, accessible but not condescending, Absolutely Small develops your intuition for the very nature of things at their most basic and intriguing levels.