Fundamentals of Quantum Mechanics


Book Description

Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models—including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom—are clearly and completely presented. Applications of these models to selected "real world topics are also included.This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest. - Accessible style and colorful illustrations make the content appropriate for professional researchers and students alike - Presents results of quantum mechanical calculations that can be performed with readily available software - Provides exceptionally clear discussions of spin-orbit coupling and group theory, and comprehensive coverage of barrier penetration (quantum mechanical tunneling) that touches upon hot topics, such as superconductivity and scanning tunneling microscopy - Problems given at the end of each chapter help students to master concepts




Quantum Mechanics


Book Description

The mathematical formalism of quantum theory in terms of vectors and operators in infinite-dimensional complex vector spaces is very abstract. The definitions of many mathematical quantities used do not seem to have an intuitive meaning, which makes it difficult to appreciate the mathematical formalism and understand quantum mechanics. This book provides intuition and motivation to the mathematics of quantum theory, introducing the mathematics in its simplest and familiar form, for instance, with three-dimensional vectors and operators, which can be readily understood. Feeling confident about and comfortable with the mathematics used helps readers appreciate and understand the concepts and formalism of quantum mechanics. This book is divided into four parts. Part I is a brief review of the general properties of classical and quantum systems. A general discussion of probability theory is also included which aims to help in understanding the probability theories relevant to quantum mechanics. Part II is a detailed study of the mathematics for quantum mechanics. Part III presents quantum mechanics in a series of postulates. Six groups of postulates are presented to describe orthodox quantum systems. Each statement of a postulate is supplemented with a detailed discussion. To make them easier to understand, the postulates for discrete observables are presented before those for continuous observables. Part IV presents several illustrative applications, which include harmonic and isotropic oscillators, charged particle in external magnetic fields and the Aharonov–Bohm effect. For easy reference, definitions, theorems, examples, comments, properties and results are labelled with section numbers. Various symbols and notations are adopted to distinguish different quantities explicitly and to avoid misrepresentation. Self-contained both mathematically and physically, the book is accessible to a wide readership, including astrophysicists, mathematicians and philosophers of science who are interested in the foundations of quantum mechanics.




Fundamentals of Quantum Mechanics


Book Description




Fundamentals of Quantum Physics


Book Description

This book presents a comprehensive course of quantum mechanics for undergraduate and graduate students. After a brief outline of the innovative ideas that lead up to the quantum theory, the book reviews properties of the Schrödinger equation, the quantization phenomena and the physical meaning of wave functions. The book discusses, in a direct and intelligible style, topics of the standard quantum formalism like the dynamical operators and their expected values, the Heisenberg and matrix representation, the approximate methods, the Dirac notation, harmonic oscillator, angular momentum and hydrogen atom, the spin-field and spin-orbit interactions, identical particles and Bose-Einstein condensation etc. Special emphasis is devoted to study the tunneling phenomena, transmission coefficients, phase coherence, energy levels splitting and related phenomena, of interest for quantum devices and heterostructures. The discussion of these problems and the WKB approximation is done using the transfer matrix method, introduced at a tutorial level. This book is a textbook for upper undergraduate physics and electronic engineering students.




Quantum Mechanics of Non-Hamiltonian and Dissipative Systems


Book Description

Quantum Mechanics of Non-Hamiltonian and Dissipative Systems is self-contained and can be used by students without a previous course in modern mathematics and physics. The book describes the modern structure of the theory, and covers the fundamental results of last 15 years. The book has been recommended by Russian Ministry of Education as the textbook for graduate students and has been used for graduate student lectures from 1998 to 2006.• Requires no preliminary knowledge of graduate and advanced mathematics • Discusses the fundamental results of last 15 years in this theory• Suitable for courses for undergraduate students as well as graduate students and specialists in physics mathematics and other sciences




Quantum Mechanics


Book Description

From the bestselling author of The Theoretical Minimum, a DIY introduction to the math and science of quantum physics First he taught you classical mechanics. Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics. In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course. An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.




Quantum Mechanics of Fundamental Systems 1


Book Description

Il capitano generale lagrimo per allegrezza e nomino quel capo: Deseado, perehe l'avevamo gia gran tempo desiderato. Antonio Pigafetta Il Primo Viaggo in torno al Mondo I would like to take some poetic license in introducing this volume in a way that seems appropriate for a country, like Chile, that Iooks to the ocean. I believe it was Heisenberg who compared different times in physics with sailing a ship. He said that most of the time we keep our ships in port, or in the protection of a bay. But on a few occasions we go into the open sea, and those occasions are really the great times in theoretical physics, when everything can change. It does not seem totally unwarranted to hope that we are now entering one of those times. In that spirit, I would like to mention a wonderful book, which in English would be called something like Chile, Or a Crazy Geography.




Fundamentals of Quantum Mechanics


Book Description




Quantum Mechanics of Fundamental Systems


Book Description

This volume examines the latest advances emerging from the theoretical exploration into the quantum mechanical structure of our universe. It will be of interest to researchers dealing with strings, quantum fields, gauge theory, and quantum gravity.




Quantum Mechanics of Fundamental Systems: The Quest for Beauty and Simplicity


Book Description

This article is dedicated to Claudio Bunster on the occasion of his 60th birthday. It is a great honor to take this opportunity to express my gratitude to him, who in my opinion has been the greatest national physicist ever, for his wise guidance and intrepid support through the years. As a Chilean, I can further tell that Claudio’s contributions have been well far beyond theoretical physics, helping our country to be ready to face future challenges through science. Gravity in diverse dimensions is a subject in which Claudio has done major c- tributions, encouraging in many ways the following work, that is being made along different fronts in collaboration with my colleagues Diego Correa, Gustavo Dotti, Julio Oliva and David Tempo. Thepursuitforwormholesolutions,whicharehandlesinthespacetimetopology, it is as old as General Relativity and it has appeared in theoretical physics within different subjects, ranging from the attempt of describing physics as pure geometry, as in the Einstein–Rosen bridge model of a particle [1], to the concept of “charge withoutcharge”[2],aswell asindifferentissuesconcerningthe Euclideanapproach to quantum gravity (see, e.g., [3]). More recently, the systematic study of this kind of objects was pushed forward by the works of Morris, Thorne and Yurtsever [4,5].