Quantum Techniques In Stochastic Mechanics


Book Description

We introduce the theory of chemical reaction networks and their relation to stochastic Petri nets — important ways of modeling population biology and many other fields. We explain how techniques from quantum mechanics can be used to study these models. This relies on a profound and still mysterious analogy between quantum theory and probability theory, which we explore in detail. We also give a tour of key results concerning chemical reaction networks and Petri nets.




Stochastic Methods in Quantum Mechanics


Book Description

This introductory survey of stochastic methods and techniques in quantum physics, functional analysis, probability theory, communications, and electrical engineering also serves as a useful and comprehensive reference volume. 1979 edition.




Nonlocal Quantum Field Theory and Stochastic Quantum Mechanics


Book Description

over this stochastic space-time leads to the non local fields considered by G. V. Efimov. In other words, stochasticity of space-time (after being averaged on a large scale) as a self-memory makes the theory nonlocal. This allows one to consider in a unified way the effect of stochasticity (or nonlocality) in all physical processes. Moreover, the universal character of this hypothesis of space-time at small distances enables us to re-interpret the dynamics of stochastic particles and to study some important problems of the theory of stochastic processes [such as the relativistic description of diffusion, Feynman type processes, and the problem of the origin of self-turbulence in the motion of free particles within nonlinear (stochastic) mechanics]. In this direction our approach (Part II) may be useful in recent developments of the stochastic interpretation of quantum mechanics and fields due to E. Nelson, D. Kershaw, I. Fenyes, F. Guerra, de la Pena-Auerbach, J. -P. Vigier, M. Davidson, and others. In particular, as shown by N. Cufaro Petroni and J. -P. Vigier, within the discussed approach, a causal action-at-distance interpretation of a series of experiments by A. Aspect and his co-workers indicating a possible non locality property of quantum mechanics, may also be obtained. Aspect's results have recently inspired a great interest in different nonlocal theories and models devoted to an understanding of the implications of this nonlocality. This book consists of two parts.




Quantum Theory and Its Stochastic Limit


Book Description

Well suited as a textbook in the emerging field of stochastic limit, which is a new mathematical technique developed for solving nonlinear problems in quantum theory.




Stochastic Methods in Quantum Mechanics


Book Description

Practical developments in such fields as optical coherence, communication engineering, and laser technology have developed from the applications of stochastic methods. This introductory survey offers a broad view of some of the most useful stochastic methods and techniques in quantum physics, functional analysis, probability theory, communications, and electrical engineering. Starting with a history of quantum mechanics, it examines both the quantum logic approach and the operational approach, with explorations of random fields and quantum field theory. The text assumes a basic knowledge of functional analysis; although some experience with probability theory and quantum mechanics is helpful, necessary ideas and results from these two disciplines are developed as needed. A selection of exercises follows each chapter, and proofs to most of the theorems are included. A comprehensive bibliography allows researchers and students to continue in the direction of their individual interests.




A Mathematical Primer on Quantum Mechanics


Book Description

This book offers a rigorous yet elementary approach to quantum mechanics that will meet the needs of Master’s-level Mathematics students and is equally suitable for Physics students who are interested in gaining a deeper understanding of the mathematical structure of the theory. Throughout the coverage, which is limited to single-particle quantum mechanics, the focus is on formulating theory and developing applications in a mathematically precise manner. Following a review of selected key concepts in classical physics and the historical background, the basic elements of the theory of operators in Hilbert spaces are presented and used to formulate the rules of quantum mechanics. The discussion then turns to free particles, harmonic oscillators, delta potential, and hydrogen atoms, providing rigorous proofs of the corresponding dynamical properties. Starting from an analysis of these applications, readers are subsequently introduced to more advanced topics such as the classical limit, scattering theory, and spectral analysis of Schrödinger operators. The main content is complemented by numerous exercises that stimulate interactive learning and help readers check their progress.




Stochastic Processes in Quantum Physics


Book Description

From the reviews: "The text is almost self-contained and requires only an elementary knowledge of probability theory at the graduate level. The book under review is recommended to mathematicians, physicists and graduate students interested in mathematical physics and stochastic processes. Furthermore, some selected chapters can be used as sub-textbooks for advanced courses on stochastic processes, quantum theory and quantum chemistry." ZAA




Stochastic Quantum Mechanics and Quantum Spacetime


Book Description

The principal intent of this monograph is to present in a systematic and self-con tained fashion the basic tenets, ideas and results of a framework for the consistent unification of relativity and quantum theory based on a quantum concept of spacetime, and incorporating the basic principles of the theory of stochastic spaces in combination with those of Born's reciprocity theory. In this context, by the physicial consistency of the present framework we mean that the advocated approach to relativistic quantum theory relies on a consistent probabilistic interpretation, which is proven to be a direct extrapolation of the conventional interpretation of nonrelativistic quantum mechanics. The central issue here is that we can derive conserved and relativistically convariant probability currents, which are shown to merge into their nonrelativistic counterparts in the nonrelativistic limit, and which at the same time explain the physical and mathe matical reasons behind the basic fact that no probability currents that consistently describe pointlike particle localizability exist in conventional relativistic quantum mechanics. Thus, it is not that we dispense with the concept oflocality, but rather the advanced central thesis is that the classical concept of locality based on point like localizability is inconsistent in the realm of relativistic quantum theory, and should be replaced by a concept of quantum locality based on stochastically formulated systems of covariance and related to the aforementioned currents.




The Theory of Open Quantum Systems


Book Description

This book treats the central physical concepts and mathematical techniques used to investigate the dynamics of open quantum systems. To provide a self-contained presentation the text begins with a survey of classical probability theory and with an introduction into the foundations of quantum mechanics with particular emphasis on its statistical interpretation. The fundamentals of density matrix theory, quantum Markov processes and dynamical semigroups are developed. The most important master equations used in quantum optics and in the theory of quantum Brownian motion are applied to the study of many examples. Special attention is paid to the theory of environment induced decoherence, its role in the dynamical description of the measurement process and to the experimental observation of decohering Schrodinger cat states. The book includes the modern formulation of open quantum systems in terms of stochastic processes in Hilbert space. Stochastic wave function methods and Monte Carlo algorithms are designed and applied to important examples from quantum optics and atomic physics, such as Levy statistics in the laser cooling of atoms, and the damped Jaynes-Cummings model. The basic features of the non-Markovian quantum behaviour of open systems are examined on the basis of projection operator techniques. In addition, the book expounds the relativistic theory of quantum measurements and discusses several examples from a unified perspective, e.g. non-local measurements and quantum teleportation. Influence functional and super-operator techniques are employed to study the density matrix theory in quantum electrodynamics and applications to the destruction of quantum coherence are presented. The text addresses graduate students and lecturers in physics and applied mathematics, as well as researchers with interests in fundamental questions in quantum mechanics and its applications. Many analytical methods and computer simulation techniques are developed and illustrated with the help of numerous specific examples. Only a basic understanding of quantum mechanics and of elementary concepts of probability theory is assumed.




Statistical Methods in Quantum Optics 1


Book Description

This is the first of a two-volume presentation on current research problems in quantum optics, and will serve as a standard reference in the field for many years to come. The book provides an introduction to the methods of quantum statistical mechanics used in quantum optics and their application to the quantum theories of the single-mode laser and optical bistability. The generalized representations of Drummond and Gardiner are discussed together with the more standard methods for deriving Fokker-Planck equations.