Quantum Tunnelling in Condensed Media


Book Description

The essays in this book deal with of the problem of quantum tunnelling and related behavior of a microscopic or macroscopic system, which interacts strongly with an "environment" - this being some form of condensed matter. The "system" in question need not be physically distinct from its environment, but could, for example, be one particular degree of freedom on which attention is focussed, as in the case of the Josephson junction studied in several of the papers. This general problem has been studied in many hundreds, if not thousands, of articles in the literature, in contexts as diverse as biophysics and quantum cosmology. The editors have grouped together papers which are representative of the main trends in this area in the last fifteen years or so and sufficiently related in general spirit and terminology that common themes can be discerned. The contributions are primarily theoretical, but the comparison with experiment is discussed wherever possible.




Quantum Tunneling and Field Electron Emission Theories


Book Description

Quantum tunneling is an essential issue in quantum physics. Especially, the rapid development of nanotechnology in recent years promises a lot of applications in condensed matter physics, surface science and nanodevices, which are growing interests in fundamental issues, computational techniques and potential applications of quantum tunneling. The book involves two relevant topics. One is quantum tunneling theory in condensed matter physics, including the basic concepts and methods, especially for recent developments in mesoscopic physics and computational formulation. The second part is the field electron emission theory, which covers the basic field emission concepts, the Fowler Nordheim theory, and recent developments of the field emission theory especially in some fundamental concepts and computational formulation, such as quantum confinement effects, Dirac fermion, Luttinger liquid, carbon nanotubes, coherent emission current, quantum tunneling time problem, spin polarized field electron emission and non-equilibrium Green's function method for field electron emission. This book presents in both academic and pedagogical styles, and is as possible as self-complete to make it suitable for researchers and graduate students in condensed matter physics and vacuum nanoelectronics. Contents: Introduction"Quantum Tunneling Theory: "Quantum Physics and Quantum FormalismBasic Physics of Quantum Scattering and TunnelingWave Function Matching MethodWKB MethodLippmann-Schwinger FormalismNon-Equilibrium Green's Function MethodSpin TunnelingApplications"Field Electron Emission Theory: "IntroductionTheoretical Model and MethodologyFowler-Nordheim TheoryField Emission from SemiconductorsSurface Effects and ResonanceThermionic Emission TheoryTheory of Dynamical Field EmissionTheory of Spin Polarized Field EmissionTheory of Field Electron Emission from NanomaterialsComputer Simulations of Field EmissionThe Empirical Theory of Field EmissionFundamental Physics of Field Electron Emission Readership: Graduate students and researchers in vacuum nanoelectronics and physics. "




Macroscopic Quantum Tunneling


Book Description

A coherent and self-contained account of macroscopic quantum phenomena for graduate students and researchers.




Quantum Tunneling in Complex Systems


Book Description

In the last two decades remarkable progress has been made in understanding and describing tunneling processes in complex systems in terms of classical trajectories. This book introduces recent concepts and achievements with particular emphasis on a dynamical formulation and relations to specific systems in mesoscopic, molecular, and atomic physics. Advanced instanton techniques, e.g. for decay rates and tunnel splittings, are discussed in the first part. The second part covers current developments for wave-packet tunneling in real-time, and the third part describes thermodynamics and dynamical approaches for barrier transmission in statistical, particularly dissipative systems.




Many-Body Quantum Theory in Condensed Matter Physics


Book Description

The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.




Condensed Matter Field Theory


Book Description

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.




Macroscopic Quantum Tunneling of the Magnetic Moment


Book Description

This is the first book presenting a coherent theoretical and experimental treatment of the rapidly developing field of macroscopic quantum tunneling of the magnetic moment. The theory is based on the concept of the magnetic instanton and its renormalization by the dissipative environment. The book includes discussions of the tunneling of magnetic moment in small ferromagnetic grains, tunneling of the Ne'el vector in antiferromagnetic grains, quantum nucleation of magnetic domains, and quantum depinning of domain walls. The experimental part collects the majority of recent data that are, or may be, relevant to spin tunneling. Among the topics described are low temperature magnetic relaxation and its interpretation in various systems, experiments on single particles and mesoscopic wires, and resonant spin tunneling in molecular magnets. This study of an important new field in condensed matter physics by two leading contributors to the subject will be of interest to theorists and experimentalists alike.




Tunneling Systems in Amorphous and Crystalline Solids


Book Description

This comprehensive book provides a full description of experimental and theoretical details and the latest theories. The expert contributions point out the direction research is currently taking, the expectations and implications, serving as useful introductory surveys.




Integrative Biophysics


Book Description

Most of the specialists working in this interdisciplinary field of physics, biology, biophysics and medicine are associated with "The International Institute of Biophysics" (IIB), in Neuss, Germany, where basic research and possibilities for applications are coordinated. The growth in this field is indicated by the increase in financial support, interest from the scientific community and frequency of publications. Audience: The scientists of IIB have presented the most essential background and applications of biophotonics in these lecture notes in biophysics, based on the summer school lectures by this group. This book is devoted to questions of elementary biophysics, as well as current developments and applications. It will be of interest to graduate and postgraduate students, life scientists, and the responsible officials of industries and governments looking for non-invasive methods of investigating biological tissues.




Charge Transfer Processes in Condensed Media


Book Description

Molecules in liquid and solid media are exposed to strong inter action forces from the surrounding medium. The formulation of a comprehensive theory of chemical processes in condensed media is consequently an elaborate task involving concepts from several areas of the natural sciences. Within the las~ two and a half decades very notable results towards the formulation of a 'unified' quantum mechanical theory of such processes have in fact been achieved, and by the variety of physical, chemical, and biological processes which can be suitably covered by this framework, the new theory represents an adequate alternative to the transition state theory. The present work has a two-fold purpose. Firstly, to provide a reasonably organized exposition of some basic aspects of these developments. This part emphasizes the fundamental similarities between chemical and other kinds of radiationless processes and includes the derivation of the most important rate expressions without resorting to involved mathematical techniques. The s- ond major purpose is to illustrate the 'unified' character of the rate theory by analysis of a considerable amount of expe- mental data from both 'conventional' kinetics and from such untraditional areas as low-temperature, strongly exothermic, and biological processes. Particular attention is here given to those systems for which a classical description is inadequate, and which provide a diagnostic distinction between several alternative theoretical approaches.