Quarks and Gluons


Book Description

"In his new book, the author introduces us to the world of particles He traces the century of progress in our search for the basic units of matter as well as those of the forces that act on it, starting from the electron and photon, the first entry in the list of elementary quantum particles, and ending up with the quarks and gluons discovered in the last decades of this century. He gives the curious layman a clear understanding of the forefront of our knowledge about the structure of matter at its deepest level".Y NambuUniversity of Chicago"This is a readable little book on particle physics and is aimed at those with no previous exposure to the subject Nevertheless, as one would expect from a leading contributor to the field, Han takes care to get things right even when using simple language, as for example in his discussion of spin".CERN Courier




An Assessment of U.S.-Based Electron-Ion Collider Science


Book Description

Understanding of protons and neutrons, or "nucleons"â€"the building blocks of atomic nucleiâ€"has advanced dramatically, both theoretically and experimentally, in the past half century. A central goal of modern nuclear physics is to understand the structure of the proton and neutron directly from the dynamics of their quarks and gluons governed by the theory of their interactions, quantum chromodynamics (QCD), and how nuclear interactions between protons and neutrons emerge from these dynamics. With deeper understanding of the quark-gluon structure of matter, scientists are poised to reach a deeper picture of these building blocks, and atomic nuclei themselves, as collective many-body systems with new emergent behavior. The development of a U.S. domestic electron-ion collider (EIC) facility has the potential to answer questions that are central to completing an understanding of atoms and integral to the agenda of nuclear physics today. This study assesses the merits and significance of the science that could be addressed by an EIC, and its importance to nuclear physics in particular and to the physical sciences in general. It evaluates the significance of the science that would be enabled by the construction of an EIC, its benefits to U.S. leadership in nuclear physics, and the benefits to other fields of science of a U.S.-based EIC.




Particles and Nuclei


Book Description

The fourth edition includes new developments, in particular a new section on the double beta decay including a discussion of the possibility of a neutrinoless decay and its implications for the standard model.




Nuclear Physics


Book Description

Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.







Particles and Nuclei


Book Description

To cope with modern developments, especially in nuclear physics research, this textbook presents nuclear and particle physics from a unifying point of view. The first part, Analysis, is devoted to disentangling the substructure of matter. The second part, Synthesis, shows how the elementary particles may be combined to build hadrons and nuclei. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modern astrophysics and cosmology". New developments are also covered. This concise text has become a standard reference for advanced and undergraduate courses.







Nuclear Chromodynamics


Book Description




50 Years Of Quarks


Book Description

'Harald Fritzsch and Murray Gell-Mann, the two fathers of quantum chromodynamics, look back at the events that led to the discovery, and eventually acceptance, of quarks as constituent particles ... it is always worthwhile to reminisce about those times when theoretical physicists were truly eclectic, these stories are the testimony of a very active era, in which theoretical and experimental discoveries rapidly chased one another ... Of central importance now is the understanding of the composition of our universe, the dark matter and dark energy, the hierarchy of masses and forces, and a consistent quantum framework of unification of all forces of nature, including gravity. The closing contributions of the book put this venture in the context of today's high-energy physics programme, and make a connection to the most popular ideas in high-energy physics today, including supersymmetry, unification and string theory.'CERN CourierToday it is known that the atomic nuclei are composed of smaller constituents, the quarks. A quark is always bound with two other quarks, forming a baryon or with an antiquark, forming a meson. The quark model was first postulated in 1964 by Murray Gell-Mann — who coined the name “quark” from James Joyce's novel Finnegans Wake — and by George Zweig, who then worked at CERN. In the present theory of strong interactions — Quantum Chromodynamics proposed by H Fritzsch and Gell-Mann in 1972 — the forces that bind the quarks together are due to the exchange of eight gluons.On the 50th anniversary of the quark model, this invaluable volume looks back at the developments and achievements in the elementary particle physics that eventuated from that beautiful model. Written by an international team of distinguished physicists, each of whom have made major developments in the field, the volume provides an essential overview of the present state to the academics and researchers.




Exciting Interdisciplinary Physics


Book Description

Nuclear physics is an exciting, broadly faceted field. It spans a wide range of topics, reaching from nuclear structure physics to high-energy physics, astrophysics and medical physics (heavy ion tumor therapy). New developments are presented in this volume and the status of research is reviewed. A major focus is put on nuclear structure physics, dealing with superheavy elements and with various forms of exotic nuclei: strange nuclei, very neutron rich nuclei, nuclei of antimatter. Also quantum electrodynamics of strong fields is addressed, which is linked to the occurrence of giant nuclear systems in, e.g., U+U collisions. At high energies nuclear physics joins with elementary particle physics. Various chapters address the theory of elementary matter at high densities and temperature, in particular the quark gluon plasma which is predicted by quantum chromodynamics (QCD) to occur in high-energy heavy ion collisions. In the field of nuclear astrophysics, the properties of neutron stars and quark stars are discussed. A topic which transcends nuclear physics is discussed in two chapters: The proposed pseudo-complex extension of Einstein's General Relativity leads to the prediction that there are no black holes and that big bang cosmology has to be revised. Finally, the interdisciplinary nature of this volume is further accentuated by chapters on protein folding and on magnetoreception in birds and many other animals.