Quaternary Capped In(Ga)As/GaAs Quantum Dot Infrared Photodetectors


Book Description

This book introduces some alternative methods for enhancing the performance of In(Ga)As/GaAs-based quantum dot infrared photodetectors (QDIPs). In(Ga)As/GaAs-based QDIPs and focal plane array (FPA) cameras have wide application in fields such as military and space science. The core of the study uses a combination of quaternary In0.21Al0.21Ga0.58As and GaAs spacer as a capping layer on In(Ga)As/GaAs quantum dots in the active region of the detector structure. For the purposes of optimization, three types of samples growths are considered with different capping thicknesses. The results presented include TEM, XRD and photoluminescence studies that compare combination barrier thickness and its effect on structural and optical properties. Compressive strain within the heterostructure, thermal stability in high temperature annealing, spectral response, shifts in PL peaks peak,and responsivity and detectivity are all considered. The results also present a narrow spectral width that was obtained by using InAs QDs which is very useful for third generation FPA camera application. The book details effect of post-growth rapid thermal annealing on device characteristics and methods to enhance responsivity and peak detectivity. The contents of this book will be useful to researchers and professionals alike.




Impact of Ion Implantation on Quantum Dot Heterostructures and Devices


Book Description

This book looks at the effects of ion implantation as an effective post-growth technique to improve the material properties, and ultimately, the device performance of In(Ga)As/GaAs quantum dot (QD) heterostructures. Over the past two decades, In(Ga)As/GaAs-based QD heterostructures have marked their superiority, particularly for application in lasers and photodetectors. Several in-situ and ex-situ techniques that improve material quality and device performance have already been reported. These techniques are necessary to maintain dot density and dot size uniformity in QD heterostructures and also to improve the material quality of heterostructures by removing defects from the system. While rapid thermal annealing, pulsed laser annealing and the hydrogen passivation technique have been popular as post-growth methods, ion implantation had not been explored largely as a post-growth method for improving the material properties of In(Ga)As/GaAs QD heterostructures. This work attempts to remedy this gap in the literature. The work also looks at introduction of a capping layer of quaternary alloy InAlGaAs over these In(Ga)As/GaAs QDs to achieve better QD characteristics. The contents of this volume will prove useful to researchers and professionals involved in the study of QDs and QD-based devices.










Oxford Handbook of Nanoscience and Technology


Book Description

These three volumes are intended to shape the field of nanoscience and technology and will serve as anessential point of reference for cutting-edge research in the field.







Springer Handbook of Electronic and Photonic Materials


Book Description

The second, updated edition of this essential reference book provides a wealth of detail on a wide range of electronic and photonic materials, starting from fundamentals and building up to advanced topics and applications. Its extensive coverage, with clear illustrations and applications, carefully selected chapter sequencing and logical flow, makes it very different from other electronic materials handbooks. It has been written by professionals in the field and instructors who teach the subject at a university or in corporate laboratories. The Springer Handbook of Electronic and Photonic Materials, second edition, includes practical applications used as examples, details of experimental techniques, useful tables that summarize equations, and, most importantly, properties of various materials, as well as an extensive glossary. Along with significant updates to the content and the references, the second edition includes a number of new chapters such as those covering novel materials and selected applications. This handbook is a valuable resource for graduate students, researchers and practicing professionals working in the area of electronic, optoelectronic and photonic materials.




Molecular Beam Epitaxy


Book Description

This multi-contributor handbook discusses Molecular Beam Epitaxy (MBE), an epitaxial deposition technique which involves laying down layers of materials with atomic thicknesses on to substrates. It summarizes MBE research and application in epitaxial growth with close discussion and a ‘how to’ on processing molecular or atomic beams that occur on a surface of a heated crystalline substrate in a vacuum.MBE has expanded in importance over the past thirty years (in terms of unique authors, papers and conferences) from a pure research domain into commercial applications (prototype device structures and more at the advanced research stage). MBE is important because it enables new device phenomena and facilitates the production of multiple layered structures with extremely fine dimensional and compositional control. The techniques can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. This book covers the advances made by MBE both in research and mass production of electronic and optoelectronic devices. It includes new semiconductor materials, new device structures which are commercially available, and many more which are at the advanced research stage. Condenses fundamental science of MBE into a modern reference, speeding up literature review Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research Coverage of MBE as mass production epitaxial technology enhances processing efficiency and throughput for semiconductor industry and nanostructured semiconductor materials research community




Physics Briefs


Book Description




Fabrication of GaAs Devices


Book Description

This book provides fundamental and practical information on all aspects of GaAs processing and gives pragmatic advice on cleaning and passivation, wet and dry etching and photolithography. Other topics covered include device performance for HBTs (Heterojunction Bipolar Transistors) and FETs (Field Effect Transistors), how these relate to processing choices, and special processing issues such as wet oxidation, which are especially important in optoelectronic devices. This book is suitable for both new and practising engineers.