Quaternary Tectonics of Utah with Emphasis on Earthquake-hazard Characterization


Book Description

This report consolidates and synthesizes information on Quaternary faulting, folding, and volcanism in Utah and characterizes recent tectonic activity throughout the state. The primary purpose is to provide a comprehensive reference on fault-specific seismic sources and surface rupture to facilitate the evaluation of earthquake hazards in Utah. Two 1:500,000-scale maps show Quaternary tectonic features categorized according to probable ages of most recent surface deformation and ages of volcanic rocks. Two appendix tables summarize significant data on the activity of mapped features, including ages of surface displacements and volcanism, slip rates, recurrence intervals, displacement amounts, and lengths of surface ruptures. Good age control and quantitative activity data are available for relatively few tectonic features in Utah and detailed work is needed in many areas of the state. 157 pages + 2 plates




UNEV Pipeline


Book Description




Geology of Millard County, Utah


Book Description

This bulletin serves not only to introduce the non-geologist to the rich geology of Millard County, but also to provide professional geologists with technical information on the stratigraphy, paleontology, and structural geology of the county. Millard County is unique among Utah’s counties in that it contains an exceptionally complete billion-year geologic record. This happened because until about 200 million years ago the area of present-day Millard County lay near sea level and was awash in shallow marine waters on a continental shelf upon which a stack of fossil-bearing strata more than 6 miles (10 km) thick slowly accumulated. This bulletin summarizes what is known about these strata, as well as younger rocks and surficial deposits in the county, and provides references to scientific papers that describe them in greater detail. Mountains North 30 x 60 (1:100,000-scale) quadrangles. These companion maps and this bulletin portray the geology of Millard County more completely and accurately than any previously published work.













NEHRP Commentary on the Gidelines for the Seismic Rehabilitation of Buildings


Book Description

This document from the National Earthquake Hazards Reduction Program (NEHRP) was prepared for the Building Seismic Safety Council (BSSC) with funding from the Federal Emergency Management Agency (FEMA). It provides commentary on the NEHRP Guidelines for the Seismic Rehabilitation of Buildings. It contains systematic guidance enabling design professionals to formulate effective & reliable rehabilitation approaches that will limit the expected earthquake damage to a specified range for a specified level of ground shaking. This kind of guidance applicable to all types of existing buildings & in all parts of the country has never existed before. Illustrated.










Consensus Preferred Recurrence-interval and Vertical Slip-rate Estimates


Book Description

This report presents the results of the Utah Quaternary Fault Parameters Working Group (hereafter referred to as the Working Group) review and evaluation of Utah’s Quaternary fault paleoseismic-trenching data. The purpose of the review was to (1) critically evaluate the accuracy and completeness of the paleoseismictrenching data, particularly regarding earthquake timing and displacement, (2) where the data permit, assign consensus, preferred recurrence-interval (RI) and vertical slip-rate (VSR) estimates with appropriate confidence limits to the faults/fault sections under review, and (3) identify critical gaps in the paleoseismic data and recommend where and what kinds of additional paleoseismic studies should be performed to ensure that Utah’s earthquake hazard is adequately documented and understood. It is important to note that, with the exception of the Great Salt Lake fault zone, the Working Group’s review was limited to faults/fault sections having paleoseismic-trenching data. Most Quaternary faults/fault sections in Utah have not been trenched, but many have RI and VSR estimates based on tectonic geomorphology or other non-trench-derived studies. Black and others compiled the RI and VSR data for Utah’s Quaternary faults, both those with and without trenches.