Quaternionic Approximation


Book Description

This book presents the extensions to the quaternionic setting of some of the main approximation results in complex analysis. It also includes the main inequalities regarding the behavior of the derivatives of polynomials with quaternionic cofficients. With some few exceptions, all the material in this book belongs to recent research of the authors on the approximation of slice regular functions of a quaternionic variable. The book is addressed to researchers in various areas of mathematical analysis, in particular hypercomplex analysis, and approximation theory. It is accessible to graduate students and suitable for graduate courses in the above framework.




Real Quaternionic Calculus Handbook


Book Description

Real quaternion analysis is a multi-faceted subject. Created to describe phenomena in special relativity, electrodynamics, spin etc., it has developed into a body of material that interacts with many branches of mathematics, such as complex analysis, harmonic analysis, differential geometry, and differential equations. It is also a ubiquitous factor in the description and elucidation of problems in mathematical physics. In the meantime real quaternion analysis has become a well established branch in mathematics and has been greatly successful in many different directions. This book is based on concrete examples and exercises rather than general theorems, thus making it suitable for an introductory one- or two-semester undergraduate course on some of the major aspects of real quaternion analysis in exercises. Alternatively, it may be used for beginning graduate level courses and as a reference work. With exercises at the end of each chapter and its straightforward writing style the book addresses readers who have no prior knowledge on this subject but have a basic background in graduate mathematics courses, such as real and complex analysis, ordinary differential equations, partial differential equations, and theory of distributions.




Quaternion Algebras


Book Description

This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.




Recent Developments in Operator Theory, Mathematical Physics and Complex Analysis


Book Description

This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.




Quaternionic Quantum Mechanics and Quantum Fields


Book Description

It has been known since the 1930s that quantum mechanics can be formulated in quaternionic as well as complex Hilbert space. But systematic work on the quaternionic extension of standard quantum mechanics has scarcely begun. Authored by a world-renowned theoretical physicist, this booksignals a major conceptual advance and gives a detailed development and exposition of quaternionic quantum mechanics for the purpose of determining whether quaternionic Hilbert space is the appropriate arena for the long sought-after unification of the standard model forces with gravitation.Significant results from earlier literature, together with many new results obtained by the author, are integrated to give a coherent picture of the subject. The book also provides an introduction to the problem of formulating quantum field theories in quaternionic Hilbert space. The book concludeswith a chapter devoted to discussions on where quaternionic quantum mechanics may fit into the physics of unification, experimental and measurement theory issues, and the many open questions that still challenge the field. This well-written treatise is a very significant contribution to theoreticalphysics. It will be eagerly read by a wide range of physicists.




Niels Bohr: Physics and the World


Book Description

Containing the proceedings of the symposium held by the American Academy of Arts and Sciences to celebrate the 100th anniversary of the birth of Niels Bohr, this collection was first published in 1988. More than any other individual, Bohr was responsible for the development of quantum mechanics and for many of its applications in the pursuit of fundamental understanding of physical reality. In addition to his unique role in the discovery and elucidation of quantum theory, Bohr led the study of the fission of nuclei and was greatly concerned with the impact of the existence of the atomic bomb in the post-World War II era. This unique volume provides a panoramic view of modern physics, some of the philosophical issues associated with quantum theory, the impact of this momentous scientific development on the political circumstance of the Cold War Era and the qualities of a superlative scientist.




Quantum Mechanics of Fundamental Systems 1


Book Description

Il capitano generale lagrimo per allegrezza e nomino quel capo: Deseado, perehe l'avevamo gia gran tempo desiderato. Antonio Pigafetta Il Primo Viaggo in torno al Mondo I would like to take some poetic license in introducing this volume in a way that seems appropriate for a country, like Chile, that Iooks to the ocean. I believe it was Heisenberg who compared different times in physics with sailing a ship. He said that most of the time we keep our ships in port, or in the protection of a bay. But on a few occasions we go into the open sea, and those occasions are really the great times in theoretical physics, when everything can change. It does not seem totally unwarranted to hope that we are now entering one of those times. In that spirit, I would like to mention a wonderful book, which in English would be called something like Chile, Or a Crazy Geography.




Spectral Theory on the S-Spectrum for Quaternionic Operators


Book Description

The subject of this monograph is the quaternionic spectral theory based on the notion of S-spectrum. With the purpose of giving a systematic and self-contained treatment of this theory that has been developed in the last decade, the book features topics like the S-functional calculus, the F-functional calculus, the quaternionic spectral theorem, spectral integration and spectral operators in the quaternionic setting. These topics are based on the notion of S-spectrum of a quaternionic linear operator. Further developments of this theory lead to applications in fractional diffusion and evolution problems that will be covered in a separate monograph.




Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes


Book Description

This book presents a new theory for evolution operators and a new method for defining fractional powers of vector operators. This new approach allows to define new classes of fractional diffusion and evolution problems. These innovative methods and techniques, based on the concept of S-spectrum, can inspire researchers from various areas of operator theory and PDEs to explore new research directions in their fields. This monograph is the natural continuation of the book: Spectral Theory on the S-Spectrum for Quaternionic Operators by Fabrizio Colombo, Jonathan Gantner, and David P. Kimsey (Operator Theory: Advances and Applications, Vol. 270).




Quaternionic Integral Transforms


Book Description

This book presents a machine-generated literature overview of quaternion integral transforms from select papers published by Springer Nature, which have been organized and introduced by the book’s editor. Each chapter presents summaries of predefined themes and provides the reader with a basis for further exploration of the topic. As one of the experimental projects initiated by Springer Nature for AI book content generation, this book shows the latest developments in the field. It will be a useful reference for students and researchers who are interested in exploring the latest developments in quaternion integral transforms.