Analysis of Queueing Networks with Blocking


Book Description

Queueing network models have been widely applied as a powerful tool for modelling, performance evaluation, and prediction of discrete flow systems, such as computer systems, communication networks, production lines, and manufacturing systems. Queueing network models with finite capacity queues and blocking have been introduced and applied as even more realistic models of systems with finite capacity resources and with population constraints. In recent years, research in this field has grown rapidly. Analysis of Queueing Networks with Blocking introduces queueing network models with finite capacity and various types of blocking mechanisms. It gives a comprehensive definition of the analytical model underlying these blocking queueing networks. It surveys exact and approximate analytical solution methods and algorithms and their relevant properties. It also presents various application examples of queueing networks to model computer systems and communication networks. This book is organized in three parts. Part I introduces queueing networks with blocking and various application examples. Part II deals with exact and approximate analysis of queueing networks with blocking and the condition under which the various techniques can be applied. Part III presents a review of various properties of networks with blocking, describing several equivalence properties both between networks with and without blocking and between different blocking types. Approximate solution methods for the buffer allocation problem are presented.




Analysis of Queueing Networks with Blocking


Book Description

Queueing network models have been widely applied as a powerful tool for modelling, performance evaluation, and prediction of discrete flow systems, such as computer systems, communication networks, production lines, and manufacturing systems. Queueing network models with finite capacity queues and blocking have been introduced and applied as even more realistic models of systems with finite capacity resources and with population constraints. In recent years, research in this field has grown rapidly. Analysis of Queueing Networks with Blocking introduces queueing network models with finite capacity and various types of blocking mechanisms. It gives a comprehensive definition of the analytical model underlying these blocking queueing networks. It surveys exact and approximate analytical solution methods and algorithms and their relevant properties. It also presents various application examples of queueing networks to model computer systems and communication networks. This book is organized in three parts. Part I introduces queueing networks with blocking and various application examples. Part II deals with exact and approximate analysis of queueing networks with blocking and the condition under which the various techniques can be applied. Part III presents a review of various properties of networks with blocking, describing several equivalence properties both between networks with and without blocking and between different blocking types. Approximate solution methods for the buffer allocation problem are presented.




Queueing Networks


Book Description

This handbook aims to highlight fundamental, methodological and computational aspects of networks of queues to provide insights and to unify results that can be applied in a more general manner. The handbook is organized into five parts: Part 1 considers exact analytical results such as of product form type. Topics include characterization of product forms by physical balance concepts and simple traffic flow equations, classes of service and queue disciplines that allow a product form, a unified description of product forms for discrete time queueing networks, insights for insensitivity, and aggregation and decomposition results that allow sub networks to be aggregated into single nodes to reduce computational burden. Part 2 looks at monotonicity and comparison results such as for computational simplification by either of two approaches: stochastic monotonicity and ordering results based on the ordering of the process generators, and comparison results and explicit error bounds based on an underlying Markov reward structure leading to ordering of expectations of performance measures. Part 3 presents diffusion and fluid results. It specifically looks at the fluid regime and the diffusion regime. Both of these are illustrated through fluid limits for the analysis of system stability, diffusion approximations for multi-server systems, and a system fed by Gaussian traffic. Part 4 illustrates computational and approximate results through the classical MVA (mean value analysis) and QNA (queueing network analyzer) for computing mean and variance of performance measures such as queue lengths and sojourn times; numerical approximation of response time distributions; and approximate decomposition results for large open queueing networks. spanPart 5 enlightens selected applications as spanloss networks originating from circuit switched telecommunications applications, capacity sharing originating from packet switching in data networks, and a hospital application that is of growing present day interest. spanThe book shows that spanthe intertwined progress of theory and practicespan will remain to be most intriguing and will continue to be the basis of further developments in queueing networks.




Network Performance Engineering


Book Description

During recent years a great deal of progress has been made in performance modelling and evaluation of the Internet, towards the convergence of multi-service networks of diverging technologies, supported by internetworking and the evolution of diverse access and switching technologies. The 44 chapters presented in this handbook are revised invited works drawn from PhD courses held at recent HETNETs International Working Conferences on Performance Modelling and Evaluation of Heterogeneous Networks. They constitute essential introductory material preparing the reader for further research and development in the field of performance modelling, analysis and engineering of heterogeneous networks and of next and future generation Internets. The handbook aims to unify relevant material already known but dispersed in the literature, introduce the readers to unfamiliar and unexposed research areas and, generally, illustrate the diversity of research found in the high growth field of convergent heterogeneous networks and the Internet. The chapters have been broadly classified into 12 parts covering the following topics: Measurement Techniques; Traffic Modelling and Engineering; Queueing Systems and Networks; Analytic Methodologies; Simulation Techniques; Performance Evaluation Studies; Mobile, Wireless and Ad Hoc Networks, Optical Networks; QoS Metrics and Algorithms; All IP Convergence and Networking; Network Management and Services; and Overlay Networks.




Queueing Networks and Markov Chains


Book Description

Critically acclaimed text for computer performance analysis--now in its second edition The Second Edition of this now-classic text provides a current and thorough treatment of queueing systems, queueing networks, continuous and discrete-time Markov chains, and simulation. Thoroughly updated with new content, as well as new problems and worked examples, the text offers readers both the theory and practical guidance needed to conduct performance and reliability evaluations of computer, communication, and manufacturing systems. Starting with basic probability theory, the text sets the foundation for the more complicated topics of queueing networks and Markov chains, using applications and examples to illustrate key points. Designed to engage the reader and build practical performance analysis skills, the text features a wealth of problems that mirror actual industry challenges. New features of the Second Edition include: * Chapter examining simulation methods and applications * Performance analysis applications for wireless, Internet, J2EE, and Kanban systems * Latest material on non-Markovian and fluid stochastic Petri nets, as well as solution techniques for Markov regenerative processes * Updated discussions of new and popular performance analysis tools, including ns-2 and OPNET * New and current real-world examples, including DiffServ routers in the Internet and cellular mobile networks With the rapidly growing complexity of computer and communication systems, the need for this text, which expertly mixes theory and practice, is tremendous. Graduate and advanced undergraduate students in computer science will find the extensive use of examples and problems to be vital in mastering both the basics and the fine points of the field, while industry professionals will find the text essential for developing systems that comply with industry standards and regulations.




Introduction to Queueing Networks


Book Description

The book examines the performance and optimization of systems where queueing and congestion are important constructs. Both finite and infinite queueing systems are examined. Many examples and case studies are utilized to indicate the breadth and depth of the queueing systems and their range of applicability. Blocking of these processes is very important and the book shows how to deal with this problem in an effective way and not only compute the performance measures of throughput, cycle times, and WIP but also to optimize the resources within these systems. The book is aimed at advanced undergraduate, graduate, and professionals and academics interested in network design, queueing performance models and their optimization. It assumes that the audience is fairly sophisticated in their mathematical understanding, although the explanations of the topics within the book are fairly detailed.




Performance Analysis of Closed Queueing Networks


Book Description

This book deals with the performance analysis of closed queueing networks with general processing times and finite buffer spaces. It offers a detailed introduction to the problem and a comprehensive literature review. Two approaches to the performance of closed queueing networks are presented. One is an approximate decomposition approach, while the second is the first exact approach for finite-capacity networks with general processing times. In this Markov chain approach, queueing networks are analyzed by modeling the entire system as one Markov chain. As this approach is exact, it is well-suited both as a reference quantity for approximate procedures and as extension to other queueing networks. Moreover, for the first time, the exact distribution of the time between processing starts is provided.




Queueing Theory in Manufacturing Systems Analysis and Design


Book Description

The objective of the book is to acquaint the reader with the use of queueing theory in the analysis of manufacturing systems.




Performance Evaluation of Computer and Communication Systems


Book Description

This volume contains the complete set of tutorial papers presented at the 16th IFIP (International Federation for Information Processing) Working Group 7.3 International Symposium on Computer Performance Modelling, Measurement and Evaluation, and a number of tutorial papers presented at the 1993 ACM (Association for Computing Machinery) Special Interest Group METRICS Conference on Measurement and Modeling of Computer Systems. The principal goal of the volume is to present an overview of recent results in the field of modeling and performance evaluation of computer and communication systems. The wide diversity of applications and methodologies included in the tutorials attests to the breadth and richness of current research in the area of performance modeling. The tutorials may serve to introduce a reader to an unfamiliar research area, to unify material already known, or simply to illustrate the diversity of research in the field. The extensive bibliographies guide readers to additional sources for further reading.