R and MATLAB


Book Description

The First Book to Explain How a User of R or MATLAB Can Benefit from the Other In today’s increasingly interdisciplinary world, R and MATLAB® users from different backgrounds must often work together and share code. R and MATLAB® is designed for users who already know R or MATLAB and now need to learn the other platform. The book makes the transition from one platform to the other as quick and painless as possible. Enables R and MATLAB Users to Easily Collaborate and Share Code The author covers essential tasks, such as working with matrices and vectors, writing functions and other programming concepts, graphics, numerical computing, and file input/output. He highlights important differences between the two platforms and explores common mistakes that are easy to make when transitioning from one platform to the other.




Functional Data Analysis with R and MATLAB


Book Description

The book provides an application-oriented overview of functional analysis, with extended and accessible presentations of key concepts such as spline basis functions, data smoothing, curve registration, functional linear models and dynamic systems Functional data analysis is put to work in a wide a range of applications, so that new problems are likely to find close analogues in this book The code in R and Matlab in the book has been designed to permit easy modification to adapt to new data structures and research problems




Statistics in Engineering


Book Description

Engineers are expected to design structures and machines that can operate in challenging and volatile environments, while allowing for variation in materials and noise in measurements and signals. Statistics in Engineering, Second Edition: With Examples in MATLAB and R covers the fundamentals of probability and statistics and explains how to use these basic techniques to estimate and model random variation in the context of engineering analysis and design in all types of environments. The first eight chapters cover probability and probability distributions, graphical displays of data and descriptive statistics, combinations of random variables and propagation of error, statistical inference, bivariate distributions and correlation, linear regression on a single predictor variable, and the measurement error model. This leads to chapters including multiple regression; comparisons of several means and split-plot designs together with analysis of variance; probability models; and sampling strategies. Distinctive features include: All examples based on work in industry, consulting to industry, and research for industry Examples and case studies include all engineering disciplines Emphasis on probabilistic modeling including decision trees, Markov chains and processes, and structure functions Intuitive explanations are followed by succinct mathematical justifications Emphasis on random number generation that is used for stochastic simulations of engineering systems, demonstration of key concepts, and implementation of bootstrap methods for inference Use of MATLAB and the open source software R, both of which have an extensive range of statistical functions for standard analyses and also enable programing of specific applications Use of multiple regression for times series models and analysis of factorial and central composite designs Inclusion of topics such as Weibull analysis of failure times and split-plot designs that are commonly used in industry but are not usually included in introductory textbooks Experiments designed to show fundamental concepts that have been tested with large classes working in small groups Website with additional materials that is regularly updated Andrew Metcalfe, David Green, Andrew Smith, and Jonathan Tuke have taught probability and statistics to students of engineering at the University of Adelaide for many years and have substantial industry experience. Their current research includes applications to water resources engineering, mining, and telecommunications. Mahayaudin Mansor worked in banking and insurance before teaching statistics and business mathematics at the Universiti Tun Abdul Razak Malaysia and is currently a researcher specializing in data analytics and quantitative research in the Health Economics and Social Policy Research Group at the Australian Centre for Precision Health, University of South Australia. Tony Greenfield, formerly Head of Process Computing and Statistics at the British Iron and Steel Research Association, is a statistical consultant. He has been awarded the Chambers Medal for outstanding services to the Royal Statistical Society; the George Box Medal by the European Network for Business and Industrial Statistics for Outstanding Contributions to Industrial Statistics; and the William G. Hunter Award by the American Society for Quality.




A Guide to MATLAB


Book Description

This book is a short, focused introduction to MATLAB and should be useful to both beginning and experienced users.




Applied Statistics Using SPSS, STATISTICA and MATLAB


Book Description

Assuming no previous statistics education, this practical reference provides a comprehensive introduction and tutorial on the main statistical analysis topics, demonstrating their solution with the most common software package. Intended for anyone needing to apply statistical analysis to a large variety of science and enigineering problems, the book explains and shows how to use SPSS, MATLAB, STATISTICA and R for analysis such as data description, statistical inference, classification and regression, factor analysis, survival data and directional statistics. It concisely explains key concepts and methods, illustrated by practical examples using real data, and includes a CD-ROM with software tools and data sets used in the examples and exercises. Readers learn which software tools to apply and also gain insights into the comparative capabilities of the primary software packages.




The Elements of MATLAB Style


Book Description

The Elements of MATLAB Style is a guide for both new and experienced MATLAB programmers. It provides a comprehensive collection of standards and guidelines for creating solid MATLAB code that will be easy to understand, enhance, and maintain. It is written for both individuals and those working in teams in which consistency is critical. This is the only book devoted to MATLAB style and best programming practices, focusing on how MATLAB code can be written in order to maximize its effectiveness. Just as Strunk and White's The Elements of Style provides rules for writing in the English language, this book provides conventions for formatting, naming, documentation, programming and testing. It includes many concise examples of correct and incorrect usage, as well as coverage of the latest language features. The author also provides recommendations on use of the integrated development environment features that help produce better, more consistent software.




An Introduction to MATLAB for Behavioral Researchers


Book Description

MATLAB is a powerful data analysis program, but many behavioral science researchers find it too daunting to learn and use. An Introduction to MATLAB for Behavioral Researchers is an easy-to-understand, hands-on guide for behavioral researchers who have no prior programming experience. Written in a conversational and non-intimidating style, the author walks students—step by step—through analyzing real experimental data. Topics covered include the basics of programming, the implementation of simple behavioral analyses, and how to make publication-ready figures. More advanced topics such as pseudo-randomization of trial sequences to meet specified criteria and working with psycholinguistic data are also covered. Interesting behavioral science examples and datasets from published studies, such as visualizing fixation patterns in eye-tracking studies and animal search behavior in two-dimensional space, help develop an intuition for data analysis, which is essential and can only be developed when working with real research problems and real data.




Exploratory Data Analysis with MATLAB


Book Description

Praise for the Second Edition: "The authors present an intuitive and easy-to-read book. ... accompanied by many examples, proposed exercises, good references, and comprehensive appendices that initiate the reader unfamiliar with MATLAB." —Adolfo Alvarez Pinto, International Statistical Review "Practitioners of EDA who use MATLAB will want a copy of this book. ... The authors have done a great service by bringing together so many EDA routines, but their main accomplishment in this dynamic text is providing the understanding and tools to do EDA. —David A Huckaby, MAA Reviews Exploratory Data Analysis (EDA) is an important part of the data analysis process. The methods presented in this text are ones that should be in the toolkit of every data scientist. As computational sophistication has increased and data sets have grown in size and complexity, EDA has become an even more important process for visualizing and summarizing data before making assumptions to generate hypotheses and models. Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data




Computational Statistics Handbook with MATLAB


Book Description

As with the bestselling first edition, Computational Statistics Handbook with MATLAB, Second Edition covers some of the most commonly used contemporary techniques in computational statistics. With a strong, practical focus on implementing the methods, the authors include algorithmic descriptions of the procedures as well as




Vibration Simulation Using MATLAB and ANSYS


Book Description

Transfer function form, zpk, state space, modal, and state space modal forms. For someone learning dynamics for the first time or for engineers who use the tools infrequently, the options available for constructing and representing dynamic mechanical models can be daunting. It is important to find a way to put them all in perspective and have them available for quick reference. It is also important to have a strong understanding of modal analysis, from which the total response of a system can be constructed. Finally, it helps to know how to take the results of large dynamic finite element models and build small MATLAB® state space models. Vibration Simulation Using MATLAB and ANSYS answers all those needs. Using a three degree-of-freedom (DOF) system as a unifying theme, it presents all the methods in one book. Each chapter provides the background theory to support its example, and each chapter contains both a closed form solution to the problem-shown in its entirety-and detailed MATLAB code for solving the problem. Bridging the gap between introductory vibration courses and the techniques used in actual practice, Vibration Simulation Using MATLAB and ANSYS builds the foundation that allows you to simulate your own real-life problems. Features Demonstrates how to solve real problems, covering the vibration of systems from single DOF to finite element models with thousands of DOF Illustrates the differences and similarities between different models by tracking a single example throughout the book Includes the complete, closed-form solution and the MATLAB code used to solve each problem Shows explicitly how to take the results of a realistic ANSYS finite element model and develop a small MATLAB state-space model Provides a solid grounding in how individual modes of vibration combine for overall system response