Fundamentals of Ionizing Radiation Dosimetry


Book Description

Fosters a thorough understand of radiation dosimetry concepts: detailed solutions to the exercises in the textbook Fundamentals of Ionizing Radiation Dosimetry!







Scintillation Dosimetry


Book Description

Scintillation Dosimetry delivers a comprehensive introduction to plastic scintillation dosimetry, covering everything from basic radiation dosimetry concepts to plastic scintillating fiber optics. Comprised of chapters authored by leading experts in the medical physics community, the book: Discusses a broad range of technical implementations, from point source dosimetry scaling to 3D-volumetric and 4D-scintillation dosimetry Addresses a wide scope of clinical applications, from machine quality assurance to small-field and in vivo dosimetry Examines related optical techniques, such as optically stimulated luminescence (OSL) or Čerenkov luminescence Thus, Scintillation Dosimetry provides an authoritative reference for detailed, state-of-the-art information on plastic scintillation dosimetry and its use in the field of radiation dosimetry.




Bioastronautics Data Book


Book Description




Development of Procedures for in Vivo Dosimetry in Radiotherapy


Book Description

Provides a comprehensive overview of the development of procedures for in vivo dosimetry in radiotherapy. It elaborates on the technology behind in vivo dosimetry and describes an initial set of measurements.




Topics in Radiation Dosimetry


Book Description

Radiation Dosimetry, Supplement 1: Topics in Radiation Dosimetry covers instruments and techniques in dealing with special dosimetry problems. The book discusses thermoluminescence dosimetry in archeological dating; dosimetric applications of track etching; vacuum chambers of radiation measurement. The text also describes wall-less detectors in microdosimetry; dosimetry of low-energy X-rays; and the theory and general applicability of the gamma-ray theory of track effects to various systems. Dose equivalent determinations in neutron fields by means of moderator techniques; as well as developments in radiophotoluminescence dosimetry are also considered. Physicists, mathematicians, and archeologists will find the book useful.




Optically Stimulated Luminescence Dosimetry


Book Description

Optically Stimulated Luminescence (OSL) has become the technique of choice for many areas of radiation dosimetry. The technique is finding widespread application in a variety of radiation dosimetry fields, including personal monitoring, environmental monitoring, retrospective dosimetry (including geological dating and accident dosimetry), space dosimetry, and many more. In this book we have attempted to synthesize the major advances in the field, covering both fundamental understanding and the many applications. The latter serve to demonstrate the success and popularity of OSL as a dosimetry method.The book is designed for researchers and radiation dosimetry practitioners alike. It delves into the detailed theory of the process from the point of view of stimulated relaxation phenomena, describing the energy storage and release processes phenomenologically and developing detailed mathematical descriptions to enable a quantitative understanding of the observed phenomena. The various stimulation modes (continuous wave, pulsed, or linear modulation) are introduced and compared. The properties of the most important synthetic OSL materials beginning with the dominant carbon-doped Al2O3, and moving through discussions of other, less-well studied but nevertheless important, or potentially important, materials. The OSL properties of the two most important natural OSL dosimetry material types, namely quartz and feldspars are discussed in depth. The applications chapters deal with the use of OSL in personal, environmental, medical and UV dosimetry, geological dating and retrospective dosimetry (accident dosimetry and dating). Finally the developments in instrumentation that have occurred over the past decade or more are described. The book will find use in those laboratories within academia, national institutes and the private sector where research and applications in radiation dosimetry using luminescence are being conducted. Potential readers include personnel involved in radiation protection practice and research, hospitals, nuclear power stations, radiation clean-up and remediation, food irradiation and materials processing, security monitoring, geological and archaeological dating, luminescence studies of minerals, etc.




EPR in the 21st Century


Book Description

The Proceedings in this volume are a refereed selection of presentations from The Third Asia-Pacific EPR/ESR Symposium (APES'01), held in Kobe, Japan from October 29 to November 1, 2001. Participants from 20 countries from Asia, Australia, Europe, North and South America presented 210 papers, of which 132 are included here.These Proceedings are also a blueprint for development of electron paramagnetic resonance (EPR) / electron spin resonance (ESR) in the Asia-Pacific region in the 21st century. The Symposium reflected a variety of research fields developed over half a century and focuses especially on the most recent developments, such as high-field and high-frequency EPR, which are envisaged to be further developed and applied to various fields in the 21st century.All sessions consisted of Plenary, Invited and Contributed presentations. The Plenary presentations aimed at summarizing the overall developments. Invited presentations, reviewing the most recent developments, and Contributed ones, dealing with original research recently carried out in the EPR/ESR area, were given in one of three parallel sessions. The unique research works presented cover various fields and reflect the existing diversity of applications of the EPR/ESR techniques.




Radiation Protection and Dosimetry


Book Description

This book provides a comprehensive yet accessible overview of all relevant topics in the field of radiation protection (health physics). The text is organized to introduce the reader to basic principles of radiation emission and propagation, to review current knowledge and historical aspects of the biological effects of radiation, and to cover important operational topics such as radiation shielding and dosimetry. The author’s website contains materials for instructors including PowerPoint slides for lectures and worked-out solutions to end-of-chapter exercises. The book serves as an essential handbook for practicing health physics professionals.