Radiation Technology for Advanced Materials:


Book Description

Radiation Technology for Advanced Materials presents a range of radiation technology applications for advanced materials. The book aims to bridge the gap between researchers and industry, describing current uses and future prospects. It describes the mature radiation processing technology used in preparing heat shrinkable materials and in wire and cable materials, giving commercial cases. In addition, the book illustrates future applications, including high-performance fibers, special self-lubricating materials, special ultra-fine powder materials, civil fibers, natural polymeric materials, battery separator membranes, special filtration materials and metallic nanomaterials. Chapters cover radiation technology in high-performance fiber and functional textiles, radiation crosslinking and typical applications, radiation crosslinking for polymer foaming material, radiation degradation and application, radiation emulsion polymerization, radiation effects of ionic liquids, radiation technology in advanced new materials, and future prospects. - Presents a range of radiation technology applications and their application to advanced materials - Covers the mature radiation processing technology used to prepare heat shrinkable materials and wire cable materials, describing real-world commercial applications - Shows the promising application of radiation technology in preparing high-performance Si and carbon fibers - Describes the radiation degradation/radiation effect used to prepare fine powder materials - Discusses radiation modification and radiation grafting techniques used to synthesize materials, such as civil fibers, natural polymeric materials and others




Radiation Technologies and Applications in Materials Science


Book Description

This book explains various kinds of non-ionizing and high-energy radiations, their interaction with materials and chemical reactions, and conditions of various kinds of materials development technologies including applications. It covers a processing-structure-property relationship and radiations used in developing many advanced materials used in various fields. It highlights application-oriented materials synthesis and modification covering a wide variety of materials such as plastics, rubber, thermo-set, ceramics, and so forth by various radiations. Features: Explains ionizing and non-ionizing radiation-assisted materials development technologies, for polymers, ceramics, metals, and carbons. Covers radiation-assisted synthesis, processing, and modification of all kinds of materials. Provides comparative studies, merits, demerits, and applications very systematically. Criss-crosses polymers science and technology, radiation technology, advanced materials technology, biomaterials technology, and so forth. Includes a section on 3D printing by LASER melting of CoCr alloys. This book is aimed at researchers and graduate students in materials science, radiation chemistry and physics, and polymer and other materials processing.




Engineering of Scintillation Materials and Radiation Technologies


Book Description

This volume provides a broad overview of the latest achievements in scintillator development, from theory to applications, and aiming for a deeper understanding of fundamental processes, as well as the discovery and availability of components for the production of new generations of scintillation materials. It includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, and development and characterization of ionizing radiation detection equipment. The book also touches upon the increased demand for cryogenic scintillators, the renaissance of garnet materials for scintillator applications, nano-structuring in scintillator development, development and applications for security, and exploration of hydrocarbons and ecological monitoring.




Synchrotron Radiation in Materials Science


Book Description

Meeting the long-felt need for in-depth information on one of the most advanced material characterization methods, a top team of editors and authors from highly prestigious facilities and institutions covers a range of synchrotron techniques that have proven useful for materials research. Following an introduction to synchrotron radiation and its sources, the second part goes on to describe the various techniques that benefit from this especially bright light, including X-ray absorption, diffraction, scattering, imaging, and lithography. The thrid and final part provides an overview of the applications of synchrotron radiation in materials science. bridging the gap between specialists in synchrotron research and material scientists, this is a unique and indispensable resource for academic and industrial researchers alike.




Solid-State Radiation Detectors


Book Description

Integrating aspects of engineering, application physics, and medical science, Solid-State Radiation Detectors: Technology and Applications offers a comprehensive review of new and emerging solid-state materials-based technologies for radiation detection. Each chapter is structured to address the current advantages and challenges of each material and technology presented, as well as to discuss novel research and applications. Featuring contributions from leading experts in industry and academia, this authoritative text: Covers modern semiconductors used for radiation monitoring Examines CdZnTe and CdTe technology for imaging applications including three-dimensional capability detectors Highlights interconnect technology for current pixel detectors Describes hybrid pixel detectors and their characterizations Tackles the integrated analog signal processing read-out front ends for particle detectors Considers new organic materials with direct bandgap for direct energy detection Summarizes recent developments involving lanthanum halide and cerium bromide scintillators Analyzes the potential of recent progress in the field of crystallogenesis, quantum dots, and photonics crystals toward a new concept of x- and gamma-ray detectors based on metamaterials Explores position-sensitivity photomultipliers and silicon photomultipliers for scintillation crystals Solid-State Radiation Detectors: Technology and Applications provides a valuable reference for engineers and scientists looking to enhance the performance of radiation detector technology for medical imaging and other applications.




Applications of Synchrotron Radiation to Materials Analysis


Book Description

Synchroton radiation (SR) is utilized in most scientific fields. This book will therefore be useful not only for researchers engaged in analytical chemistry, and those studying the basic fields such as physics, chemistry, biology, as well as earth science, medicine, and life science but also for those engaged in research for elucidating structure of material and its function in the application fields including applied physics, semiconductor engineering, and metal engineering. The book has a highly interdisciplinary character. The outstanding characteristics of SR have also contributed to the rapid development of new fields and applications in analytical chemistry.Features of this book:• Explains the basics of SR• Facilities and instrumentation are covered to facilitate the planning of experiments using SR.• Aspects for the future development of SR are included together with an introduction to the latest techniques which are expected to find increasing use in the coming years.This book should stimulate students specializing in analytical chemistry and materials science to have an interest in SR. In addition, it will provide scientists who are beginning analytical chemistry research using SR with instructive and illustrative descriptions. The book can also be used as an explanatory text for advanced research on the application of SR.




Neutrons and Synchrotron Radiation in Engineering Materials Science


Book Description

Structural analysis is becoming increasingly important for the design of novel, advanced engineering materials, components and assemblies. By using the neutrons and synchrotron radiation, information about the micro- and nanostructure of materials can be obtained non-destructively and with high spatial reolution, both in the near-surface region an also in the bulk of samples and components. Besides its coverage of synchrotron and neutron sources, materials and material processes, measuring techniques, and applications, this ready reference both important method types: diffraction and tomography. Following an introduction, a general section leads on to methods, while further sections are devoted to emerging methods an industrial applications. In this way, the text provides new users of large-scale facilities with easy access to an understanding of both the methods and opportunities offered by different sources and instruments.




Green Chemical Synthesis with Microwaves and Ultrasound


Book Description

Green Chemical Synthesis with Microwaves and Ultrasound A guide to the efficient and sustainable synthesis of organic compounds Chemical processes and the synthesis of compounds are essential aspects of numerous industries, and particularly central to the creation of drug-like structures. Their often significant environmental biproducts, however, have driven substantial innovations in the areas of green and organic synthesis, which have the potential to drive efficient, solvent-free synthesis and create more sustainable chemical processes. The use of microwaves and ultrasounds in chemical synthesis has proven an especially fruitful area of research, with the potential to produce a more sustainable industrial future. Green Chemical Synthesis with Microwaves and Ultrasound provides a comprehensive overview of recent advances in microwave- and ultrasound-driven synthesis and their cutting-edge applications. Green Chemical Synthesis with Microwaves and Ultrasound readers will also find: Introduction to the key equipment and tools of green chemical synthesis Detailed discussion of methods including ultrasound irradiation, metal-catalyzed reactions, enzymatic reactions, and many more An authorial team with immense experience in environmentally friendly organic chemical production Green Chemical Synthesis with Microwaves and Ultrasound is ideal for chemists, organic chemists, chemical engineers, biochemists, and any researchers or industry professionals working on the synthesis of chemicals and/or organic compounds.




Synchrotron Radiation Science and Applications


Book Description

This book collects several contributions presented at the 2019 meeting of the Italian Synchrotron Radiation Society (SILS), held in Camerino, Italy, from 9 to 11 September 2019. Topics included are recent developments in synchrotron radiation facilities and instrumentation, novel methods for data analysis, applications in the fields of materials physics and chemistry, Earth and environmental science, coherence in x-ray experiments. The book is intended for advanced students and researchers interested in synchrotron-based techniques and their application in diverse fields.




Applications of Radiation Chemistry in the Fields of Industry, Biotechnology and Environment


Book Description

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.