Radio Astronomy and Cosmology


Book Description

337 F(e) = (z) where the angle between the directions III and 112 is equal to 8. r is the angular diameter effective distance of the epoch for recombination. F (8) ~ve have F(e) : f (e) ~ (S" ) e. . ~ is a Bessel function. It is assumed here that the spectrum of gravitational waves takes the form 1\ hI'::: hoK for all relevant wavelengths, a is beam width of the radio antenna, d\= d~, and ~ is the duration of the process of recombinations in \-time. The results for different beam widths are shown in Fig. 1. 338 I. D. NOVIKOV 1-. . . -__ 0. 5 1 1. 5 2 e' 0. 5 o and for a l' (solid line) and Fig. 1. The function f(8) for n for a = 2' (dotted line). These formula should be used in analysing the implications of future observations. Comparison with the observational data now available enables us to establish an upper limit for the energy density of long gravitational waves. This method is most sensitive for gravitational waves with A ~ ct The fluctuations ~; due to these waves have scale ~ 0. 03 GW rec 4 radian. If, according to modern observations, we take ~;




Essential Radio Astronomy


Book Description

The ideal text for a one-semester course in radio astronomy Essential Radio Astronomy is the only textbook on the subject specifically designed for a one-semester introductory course for advanced undergraduates or graduate students in astronomy and astrophysics. It starts from first principles in order to fill gaps in students' backgrounds, make teaching easier for professors who are not expert radio astronomers, and provide a useful reference to the essential equations used by practitioners. This unique textbook reflects the fact that students of multiwavelength astronomy typically can afford to spend only one semester studying the observational techniques particular to each wavelength band. Essential Radio Astronomy presents only the most crucial concepts—succinctly and accessibly. It covers the general principles behind radio telescopes, receivers, and digital backends without getting bogged down in engineering details. Emphasizing the physical processes in radio sources, the book's approach is shaped by the view that radio astrophysics owes more to thermodynamics than electromagnetism. Proven in the classroom and generously illustrated throughout, Essential Radio Astronomy is an invaluable resource for students and researchers alike. The only textbook specifically designed for a one-semester course in radio astronomy Starts from first principles Makes teaching easier for astronomy professors who are not expert radio astronomers Emphasizes the physical processes in radio sources Covers the principles behind radio telescopes and receivers Provides the essential equations and fundamental constants used by practitioners Supplementary website includes lecture notes, problem sets, exams, and links to interactive demonstrations An online illustration package is available to professors




An Introduction to Radio Astronomy


Book Description

A thorough introduction to radio astronomy and techniques for students and researchers approaching radio astronomy for the first time.




A Brief History of Radio Astronomy in the USSR


Book Description

This translation of A Brief History of Radio Astronomy in the USSR makes descriptions of the antennas and instrumentation used in the USSR, the astronomical discoveries, as well as interesting personal backgrounds of many of the early key players in Soviet radio astronomy available in the English language for the first time. This book is a collection of memoirs recounting an interesting but largely still dark era of Soviet astronomy. The arrangement of the essays is determined primarily by the time when radio astronomy studies began at the institutions involved. These include the Lebedev Physical Institute (FIAN), Gorkii State University and the affiliated Physical-Technical Institute (GIFTI), Moscow State University Sternberg Astronomical institute (GAISH) and Space Research Institute (IKI), the Department of Radio Astronomy of the Main Astronomical Observatory in Pulkovo (GAO), Special Astrophysical Observatory (SAO), Byurakan Astrophysical Observatory (BAO), Crimean Astrophysical Observatory, Academy of Sciences of the Ukraine (SSR), Institute of Radio Physics and Electronics of the USSR Academy of Sciences (IRE), Institute of Terrestrial Magnetism, the Ionosphere and Radio-Wave Propagation Institute (IZMIRAN), Siberian Institute of Terrestrial Magnetism, the Ionosphere and Radio-Wave Propagation (SibIZMIRAN), the Radio Astrophysical Observatory of the Latvian Academy of Sciences and Leningrad State University. A Brief History of Radio Astronomy in the USSR is a fascinating source of information on a past era of scientific culture and fields of research including the Soviet SETI activities. Anyone interested in the recent history of science will enjoy reading this volume.




Working Papers


Book Description

This volume contains working papers on astronomy and astrophysics prepared by 15 non-National Research Council panels in areas ranging from radio astronomy to the status of the profession.




The Early Years of Radio Astronomy


Book Description

Recollection by pioneers in radio astronomy, to mark the fiftieth anniversary of extraterrestrial radio emission in 1933.




Cosmos


Book Description

The definitive history of humanity's search to find its place within the universe. North charts the history of astronomy and cosmology from the Paleolithic period to the present day.




Radio Astronomy and Cosmology


Book Description

337 F(e) = (z) where the angle between the directions III and 112 is equal to 8. r is the angular diameter effective distance of the epoch for recombination. F (8) ~ve have F(e) : f (e) ~ (S" ) e. . ~ is a Bessel function. It is assumed here that the spectrum of gravitational waves takes the form 1\ hI'::: hoK for all relevant wavelengths, a is beam width of the radio antenna, d\= d~, and ~ is the duration of the process of recombinations in \-time. The results for different beam widths are shown in Fig. 1. 338 I. D. NOVIKOV 1-. . . -__ 0. 5 1 1. 5 2 e' 0. 5 o and for a l' (solid line) and Fig. 1. The function f(8) for n for a = 2' (dotted line). These formula should be used in analysing the implications of future observations. Comparison with the observational data now available enables us to establish an upper limit for the energy density of long gravitational waves. This method is most sensitive for gravitational waves with A ~ ct The fluctuations ~; due to these waves have scale ~ 0. 03 GW rec 4 radian. If, according to modern observations, we take ~;




Introduction to Astronomy and Cosmology


Book Description

Introduction to Astronomy & Cosmology is a modern undergraduate textbook, combining both the theory behind astronomy with the very latest developments. Written for science students, this book takes a carefully developed scientific approach to this dynamic subject. Every major concept is accompanied by a worked example with end of chapter problems to improve understanding Includes coverage of the very latest developments such as double pulsars and the dark galaxy. Beautifully illustrated in full colour throughout Supplementary web site with many additional full colour images, content, and latest developments.




Cosmic Magnetism,


Book Description

The study of extraterrestrial magnetic fields is a relatively new one, confirmation of the existance of the first such field (that of our Sun) having come a s late as 1908. In the past 30 years a great ammount of knowledge has been accumulated on Cosmic Magnetism, which has turned out to be a truly fascinating topic for study. Percy Seymour's book is the first to deal with the topic in a non-mathematical way, and he offers a fine introduction to his subject. The first three chapters consolidate our knowledge on magnetism in general and the magnetic field of the Earth, as well as discussing the reasons for studying astronomy and cosmic magnetism in particular. The remainder of the book is devoted to the main areas of cosmic magnetism - solar, plantetary and interplanetary fields, fields in stars and pulsars, fields of the milky way and fields in other galaxies. Cosmic Magnetism in an ideal book for sixth-formers and undergraduates studying physics or astronomy and will also appeal to amateur astronomers. as previous work on this topic has been 'hidden' in specialised academic journals.