Ionospheric Radio


Book Description

This introductory text replaces two earlier publications (Davies 1965, 1969). Among the topics: characteristics of waves and plasma, the solar-terrestrial system, the Appleton formula, radio soundings of the ionosphere, morphology of the ionosphere, oblique propagation, importance of amplitude and phase, earth-space propagation. Annotation copyrighted by Book News, Inc., Portland, OR




The Propagation of Radio Waves


Book Description

This book is concerned with the ionosphere and the magnetosphere, and the theory of their effect on radio waves. It includes accounts of some mathematical topics now widely used in this study, particularly W. K. B. approximations, Airy integral functions and integration by steepest descents. The subject is divided into ray theory and full wave theory. Ray theory is useful for high frequencies when the ionosphere is treated as a horizonally stratified medium. The discussion of the magnetosphere, whose structure is more complicated, includes an account of whistlers and ion cyclotron whistlers. The book has been planned both for final year undergraduates and as a reference book for research. It is suitable as a course book on radio propagation for students of physics or electrical engineering or mathematics. Some of the topics are presented from an elementary viewpoint so as to help undergraduates new to the subject. The later parts are more advanced. Because the subject is so large and has seen many important recent advances, some topics have had to be treated briefly, but there is a full bibliography with about 600 references.




Wave Propagation in the Ionosphere


Book Description

In this book, the author draws on his broad experience to describe both the theory and the applications of wave propagations. The contents are presented in four parts and the sequence of these parts reflect the development of ionospheric and propagational research in areas such as space research geophysics and communications. The first part of the book presents an outline of the theory of electromagnetic waves propagating in a cold electron plasma. For reference, vector analysis, dyadics and eigenvalues introduced in this part are presented in the appendices. Practical aspects of radio wave propagation are the subject of the second part. The typical conditions in different frequency ranges are discussed and the irregular features of the ionospheric structure such as sound and gravity waves are also considered. Warm plasma and the effects of ions are considered in the third part, which includes a discussion of sound-like waves in electron and ion plasmas. Nonlinear effects and instabilities are described in the fourth part.




Space Physics and Aeronomy, Ionosphere Dynamics and Applications


Book Description

A comprehensive review of global ionospheric research from the polar caps to equatorial regions It's more than a century since scientists first identified the ionosphere, the layer of the Earth’s upper atmosphere that is ionized by solar and cosmic radiation. Our understanding of this dynamic part of the near-Earth space environment has greatly advanced in recent years thanks to new observational technologies, improved numerical models, and powerful computing capabilities. Ionosphere Dynamics and Applications provides a comprehensive overview of historic developments, recent advances, and future directions in ionospheric research. Volume highlights include: Behavior of the ionosphere in different regions from the poles to the equator Distinct characteristics of the high-, mid-, and low-latitude ionosphere Observational results from ground- and space-based instruments Ionospheric impacts on radio signals and satellite operations How earthquakes and tsunamis on Earth cause disturbances in the ionosphere The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief




Nonlinear Phenomena in the Ionosphere


Book Description

Nonlinear effects in the ionosphere (cross modulation of radio waves) have been known since the 1930s. Only recently, however, has the rapid increase in the power and directivity of the radio transmitters made it possible to alter the properties of the ionosphere strongly and to modify it artificially by applying radio waves. This has revealed a variety of new physical phenomena. Their study is not only of scien tific interest but also undisputedly of practical interest, and is presently progressing very rapidly. This monograph is devoted to an exposition of the present status of theoretical research on this problem. Particular attention is paid, naturally, to problems in the development of which the author himself took part. It is my pleasant duty to thank V. L. Ginzburg, L. P. Pitaevskii, V. V. Vas'kov, E. E. Tsedilina, A. B. Shvartsburg, and Va. S. Dimant for useful discussions and for valuable remarks during various stages of the work on the problem considered in this book. Contents 1. Introduction . . . . . . . . . . . . . . . . . . .




Radio Techniques for Probing the Terrestrial Ionosphere


Book Description

In the years since the pioneering efforts of Sir Edward Appleton, M. A. F. Barnett, G. Breit, and M. A. Thve, many radio techniques have been employed to investigate the terrestrial ionosphere. The purposes of this book are to exam ine the basic physical interaction process of radio waves with the ionosphere, scrutinize each of the radio techniques currently in use, and describe the elements of each technique, as well as assess their capabilities and limitations. I have included some of the history of each technique, since we often tend to forget the efforts of the "pioneers". The interaction of radio waves with the terrestrial ionosphere has been described in considerable detail in several "classic" treatments, e.g., Ratcliffe (1959), Al'pert (1963), Budden (1961) and Davies (1965), Rishbeth and e.g., Flock (1979), Davies Garriott (1969), and in other more recent books, (1990), Hargreaves (1979), and Budden (1985). A few of the radio techniques have been described by Hargreaves (1979) and a book by Giraud and Petit (1978) has also included discussion of several of the techniques. The "WITS" handbook No. 2 (1989) also contains description of several radio techniques.




Probing the Sky with Radio Waves


Book Description

By the late nineteenth century, engineers and experimental scientists generally knew how radio waves behaved, and by 1901 scientists were able to manipulate them to transmit messages across long distances. What no one could understand, however, was why radio waves followed the curvature of the Earth. Theorists puzzled over this for nearly twenty years before physicists confirmed the zig-zag theory, a solution that led to the discovery of a layer in the Earth’s upper atmosphere that bounces radio waves earthward—the ionosphere. In Probing the Sky with Radio Waves, Chen-Pang Yeang documents this monumental discovery and the advances in radio ionospheric propagation research that occurred in its aftermath. Yeang illustrates how the discovery of the ionosphere transformed atmospheric science from what had been primarily an observational endeavor into an experimental science. It also gave researchers a host of new theories, experiments, and instruments with which to better understand the atmosphere’s constitution, the origin of atmospheric electricity, and how the sun and geomagnetism shape the Earth’s atmosphere. This book will be warmly welcomed by scholars of astronomy, atmospheric science, geoscience, military and institutional history, and the history and philosophy of science and technology, as well as by radio amateurs and electrical engineers interested in historical perspectives on their craft.




Propagation of Radiowaves


Book Description

This book has been fully updated to reflect the latest developments in the field of radio communications. This book introduces the basic concepts and mechanisms of radiowave propagation engineering in both the troposphere and ionosphere, and includes greater emphasis on the needs of digital technologies and new kinds of radio systems.




The High-Latitude Ionosphere and its Effects on Radio Propagation


Book Description

A modern treatment of the physics and phenomena of the ionosphere, beginning with the basics of radio propagation and the use of radio techniques in ionospheric studies. Ample cross-referencing, chapter summaries and reference lists make this book an invaluable aid for graduate students, ionospheric physicists and radio engineers.




Ionospheric Radio Propagation


Book Description