Radioactive Aerosols


Book Description

Whenever radioactivity is released to the atmosphere, for example by the detonation of nuclear weapons or the testing of nuclear weapons or from nuclear reactor accidents that fraction of it which remains airborne for more than a few hours is liable to be attached to aerosol particles. The resulting radioactive aerosols are carried by atmospheric mixing processes until they settle out or are scavenged by precipitation. The radiation exposure pathway of maximum concern to humans is by inhalation of aerosols and their deposition in the respiratory tract. In this context, it is important to note that radioactive aerosols are commonly of natural origin alos. In particular, the associated radionuclides can be of natural terrestrial origin, such as the decay products of radon gas, or they can e cosmogenic, such as beryllium-7. The exposure of miners of uranium and other ores and minerals to radon and its aerosol-borne decay products is of major significance. The book describes the formation of aerosols, their aerodynamic size distribution, their atmospheric residence time, their sampling and measurement, the range of radioactive aerosols found and studied thus far, including man-made nuclides and radon decay products and their interaction with man, including deposition in the lung and subsequent health effects. - Advanced level science handbook for researchers, scientists and academics - Covers all aspects of radiation exposure in humans, including subsequent health implications - Presents the latest findings and analysis in this highly topical area




Aerosols Handbook


Book Description

As more attention is dedicated to understanding the occupational health risks associated with the industrial manufacture and use of nanotechnology, Aerosols Handbook: Measurement, Dosimetry, and Health Effects is a timely presentation of time-tested research in the field of aerosol science. The book covers a multitude of topics in indoor, outdoor,




Understanding Radioactive Aerosols and Their Measurement


Book Description

This book is intended as an introduction to radioactivity and aerosols for the scientifically literate reader who has had no previous exposure to either of these subjects. Although its main focus is radioactive aerosols, on the road to this subject I provide short, somewhat independent introductions to both radioactivity and aerosols, with some emphasis on experimental aspects. The audience I have in mind is upper-level undergraduates or beginning graduate students with a minimum background of introductory college courses in physics, chemistry, and calculus. This book may also be useful to "crossover" professional- professionals in other fields of science and engineering, for example biology or geoscience, who would like a step-by-step introduction to this subject matter from the physical science perspective. In writing this book I have been sensitive to requests and suggestions from students who need some background in this subject matter but will probably not specialize in it. These students are bright, but busy, and they sometimes feel overwhelmed by the mass of information in advanced, comprehensive texts. No matter how noble the intentions of the authors (or the teachers assigning the books!), these students often do not have time to read such books through cover to cover, and they fmd it difficult to pick out a coherently-connected subset of the material. Furthermore, modern students studying an interdisciplinary subject like radioactive aerosols are likely to be more diversified than ever, in educational background, in interests, and in preparation.




Aerosols


Book Description

This self-contained handbook and ready reference examines aerosol science and technology in depth, providing a detailed insight into this progressive field. As such, it covers fundamental concepts, experimental methods, and a wide variety of applications, ranging from aerosol filtration to biological aerosols, and from the synthesis of carbon nanotubes to aerosol reactors. Written by a host of internationally renowned experts in the field, this is an essential resource for chemists and engineers in the chemical and materials disciplines across multiple industries, as well as ideal supplementary reading in graduate level courses.




Aerosol Science


Book Description

AEROSOL SCIENCE TECHNOLOGY AND APPLICATIONS Aerosols influence many areas of our daily life. They are at the core of environmental problems such as global warming, photochemical smog and poor air quality. They can also have diverse effects on human health, where exposure occurs in both outdoor and indoor environments. However, aerosols can have beneficial effects too; the delivery of drugs to the lungs, the delivery of fuels for combustion and the production of nanomaterials all rely on aerosols. Advances in particle measurement technologies have made it possible to take advantage of rapid changes in both particle size and concentration. Likewise, aerosols can now be produced in a controlled fashion. Reviewing many technological applications together with the current scientific status of aerosol modelling and measurements, this book includes: Satellite aerosol remote sensing The effects of aerosols on climate change Air pollution and health Pharmaceutical aerosols and pulmonary drug delivery Bioaerosols and hospital infections Particle emissions from vehicles The safety of emerging nanomaterials Radioactive aerosols: tracers of atmospheric processes With the importance of this topic brought to the public's attention after the eruption of the Icelandic volcano Eyjafjallajökull, this book provides a timely, concise and accessible overview of the many facets of aerosol science.




Radioactive Air Sampling Methods


Book Description

Although the field of radioactive air sampling has matured and evolved over decades, it has lacked a single resource that assimilates technical and background information on its many facets. Edited by experts and with contributions from top practitioners and researchers, Radioactive Air Sampling Methods provides authoritative guidanc




Aerosol Measurement


Book Description

Aerosol Measurement: Principles, Techniques, and Applications Third Edition is the most detailed treatment available of the latest aerosol measurement methods. Drawing on the know-how of numerous expert contributors; it provides a solid grasp of measurement fundamentals and practices a wide variety of aerosol applications. This new edition is updated to address new and developing applications of aerosol measurement, including applications in environmental health, atmospheric science, climate change, air pollution, public health, nanotechnology, particle and powder technology, pharmaceutical research and development, clean room technology (integrated circuit manufacture), and nuclear waste management.







Health Risks of Radon and Other Internally Deposited Alpha-Emitters


Book Description

This book describes hazards from radon progeny and other alpha-emitters that humans may inhale or ingest from their environment. In their analysis, the authors summarize in one document clinical and epidemiological evidence, the results of animal studies, research on alpha-particle damage at the cellular level, metabolic pathways for internal alpha-emitters, dosimetry and microdosimetry of radionuclides deposited in specific tissues, and the chemical toxicity of some low-specific-activity alpha-emitters. Techniques for estimating the risks to humans posed by radon and other internally deposited alpha-emitters are offered, along with a discussion of formulas, models, methods, and the level of uncertainty inherent in the risk estimates.




Aerosol Science


Book Description

The subject of aerosols goes back many years and enters many aspects of science and technology. Optics, heat-transfer, biology, meteorology and pollution are just a few areas where the behaviour of small particles suspended in a gas is of vital importance. More recently, with increasing concern about the consequences of accidents in nuclear reactors and the effect of global nuclear war (i.e., the nuclear winter) a great deal of work has been directed towards the dispersal of radioactive aerosols in closed containers and in the atmosphere. The purpose of the book is twofold: to give a thorough treatment of the fundamentals of aerosol behaviour with rigorous proofs and detailed derivations of the basic equations and removal mechanisms and also to give practical examples with special attention to radioactive particles and their distribution in size following a release arising from an accident with a nuclear system. This book will be useful both as a course text and as a reference source.