Genetics, Evolution and Radiation


Book Description

This book is dedicated to the great scientist and outstanding individual Nikolay Wladimirovich Timofeeff-Ressovsky. The book brings together a number of brief stories/essays about Timofeeff-Ressovsky including “Stories told by himself”, and scientific chapters addressing his major research areas: genetics, radiobiology, radiation ecology and epidemiology, and evolution. Timofeeff-Ressovsky contributed to several fields of biology and established new directions of scientific research. He often repeated the phrase, which would later become famous: “Science should not be approached with the ferocity of wild animals”. In keeping with that philosophy, the issues discussed here are still open. Each scientific part starts with a current review; the chapters present leading scientific schools and views. The main theme discussed in the genetics part is mutation variability in the context of linear (replication, transcription, translation) and conformational template processes, and its dependence on phylogenetic group. In turn, the radiobiology chapters focus on the reorganization of DNA, cell, and population variability under low-dose irradiation, sparking indirect processes and adaptive response. The radiation ecology and epidemiology parts present data on the consequences of nuclear plants and related accidents for ecological systems and human beings. Here some approaches to estimating radiation risks are also offered. Evolution laws are demonstrated in the genomic universe, plant-microbe symbiosis, stabilizing and destabilizing (directional) selection. The last essay demonstrates the principles of organization operating in local animal populations, which are approached as social organisms of complex systemic nature. The chapter 'Radiation-Induced Aging and Genetic Instability of Mesenchymal Stem Cells: An Issue for Late Health Effects?' is available open access under a CC BY 4.0 license.




Radioactive Evolution


Book Description

How far would you go to change humanity's fate? Jared Cartwright has spent the last two years delving into the scarred wastelands of an earth ravaged by war. To face his reality, Jared must become an apex predator if he hopes to survive. He must evolve beyond human limitations. Jared's quest takes a new turn when he discovers dragons are real.




Evolution


Book Description

Explains Darwin's theory of evolution, natural selection, and adaptation, and how he came to develop it.




Handbook of Nuclear Physics


Book Description

This handbook is a comprehensive, systematic source of modern nuclear physics. It aims to summarize experimental and theoretical discoveries and an understanding of unstable nuclei and their exotic structures, which were opened up by the development of radioactive ion (RI) beam in the late 1980s. The handbook comprises three major parts. In the first part, the experiments and measured facts are well organized and reviewed. The second part summarizes recognized theories to explain the experimental facts introduced in the first part. Reflecting recent synergistic progress involving both experiment and theory, the chapters both parts are mutually related. The last part focuses on cosmo-nuclear physics—one of the mainstream subjects in modern nuclear physics. Those comprehensive topics are presented concisely. Supported by introductory reviews, all chapters are designed to present their topics in a manner accessible to readers at the graduate level. The book therefore serves as a valuable source for beginners as well, helping them to learn modern nuclear physics.




Nuclear Energy and the Evolution of Fission to Fusion Power


Book Description

Nuclear Energy and the Evolution of Fission to Fusion Power: The Role of Plasma and Small Modular Reactors (SMRs) in Bridging Technologies by Ronald Legarski, Yash Patel, and Zoltan Csernus offers an authoritative exploration of the development and future of nuclear energy. The book traces the journey from the discovery of nuclear fission to the emerging promise of fusion power, highlighting the role of Small Modular Reactors (SMRs) and plasma technologies in advancing clean energy. Ronald Legarski, an expert in simplifying complex technical ideas, delves into how nuclear advancements, including SMRs and grid technologies, can revolutionize energy production. Yash Patel, an accomplished entrepreneur and trained Nuclear Engineer, contributes his extensive experience in project management and high-energy physics, providing insights into innovation and regulatory compliance in nuclear technology. Zoltan Csernus, with over 40 years of experience as a master electrician, specializes in power quality improvements and groundbreaking harmonics reduction technology, playing a key role in SMR and energy storage developments. This comprehensive guide is indispensable for energy professionals, engineers, and those looking to understand the future of nuclear power. It covers the scientific breakthroughs, reactor technologies, environmental considerations, and future prospects of nuclear energy, offering a thorough look at how fission and fusion technologies will help shape a sustainable energy future.




Artificial Evolution


Book Description

This book constitutes the thoroughly refereed post-conference proceedings of the 8th International Conference on Artificial Evolution, EA 2007, held in Tours, France in October 2007. The 27 revised full papers presented were carefully reviewed and selected from 62 submissions during two rounds of reviewing and improvement. The papers cover all aspects of artificial evolution: genetic programming, swarm intelligence, combinatorial and multi-objective optimization, theory in genetic algorithms and evolutionary systems, as well as applications of evolutionary algorithms.




Astrophysics with Radioactive Isotopes


Book Description

Dealing with astrophysics derived from the radiation emitted by radioactive atomic nuclei, this book describes the different methods used to measure cosmic radio-isotopes. It demonstrates how this astronomical window has contributed to the understanding of the sources and the chemical evolution of cosmic gas. Reference materials and explanations are included for students in advanced stages of their education. Nuclear reactions in different sites across the universe lead to the production of stable and unstable nuclei. Their abundances can be measured through different methods, allowing to study the various nuclear processes taking place in cosmic environments. Nucleosynthesis is the cosmic formation of new nuclear species, starting from hydrogen and helium resulting from the big bang origins. Stars create and eject synthesized nuclei during their evolution and explosions. Incorporation of the new interstellar composition into next-generation stars characterises the compositional (chemical) evolution of cosmic gas in and between galaxies. Radioactive species have unique messages about how this occurs. Since the first Edition of this book published in 2011 with the title Astronomy with Radioactivities, long-awaited new direct observations of supernova radioactivity have been made and are now addressed in two updated chapters dealing with supernovae. In this second Edition, the advances of recent years beyond one-dimensional treatments of stellar structure and stellar explosions towards 3-dimensional models have been included, and led to significant re-writings in Chapters 3-5. The sections on the Solar System origins have been re-written to account for new insights into the evolution of giant molecular clouds. The chapter on diffuse radioactivities now also includes material measurements of radioactivities in the current solar system, and their interpretations for recent nucleosynthesis activity in our Galaxy. Significant new results on gamma-rays from positron annihilations have been accounted for in that chapter, and led to new links with nucleosynthesis sources as well as interstellar transport processes. A new chapter now provides a description of interstellar processes often called 'chemical evolution', thus linking the creation of new nuclei to their abundance observations in gas and stars. The experimental / instrumental chapters on nuclear reaction measurements, on gamma-ray telescopes, and pre-solar grain laboratories have been updated. Moreover, new windows of astronomy that have been opened up in recent years have been included in the discussions of the multi-messenger approach that broadens the basis for astrophysical insights.




Evolution


Book Description

Evolution is the single unifying principle of biology and core to everything in the life sciences. More than a century of work by scientists from across the biological spectrum has produced a detailed history of life across the phyla and explained the mechanisms by which new species form. This textbook covers both this history and the mechanisms of speciation; it also aims to provide students with the background needed to read the research literature on evolution. Students will therefore learn about cladistics, molecular phylogenies, the molecular-genetical basis of evolutionary change including the important role of protein networks, symbionts and holobionts, together with the core principles of developmental biology. The book also includes introductory appendices that provide background knowledge on, for example, the diversity of life today, fossils, the geology of Earth and the history of evolutionary thought. Key Features Summarizes the origins of life and the evolution of the eukaryotic cell and of Urbilateria, the last common ancestor of invertebrates and vertebrates. Reviews the history of life across the phyla based on the fossil record and computational phylogenetics. Explains evo-devo and the generation of anatomical novelties. Illustrates the roles of small populations, genetic drift, mutation and selection in speciation. Documents human evolution using the fossil record and evidence of dispersal across the world leading to the emergence of modern humans.




The Rise of Nuclear Fear


Book Description

After a tsunami destroyed the cooling system at Japan's Fukushima Nuclear Power Plant, triggering a meltdown, protesters around the world challenged the use of nuclear power. Germany announced it would close its plants by 2022. Although the ills of fossil fuels are better understood than ever, the threat of climate change has never aroused the same visceral dread or swift action. Spencer Weart dissects this paradox, demonstrating that a powerful web of images surrounding nuclear energy holds us captive, allowing fear, rather than facts, to drive our thinking and public policy. Building on his classic, Nuclear Fear, Weart follows nuclear imagery from its origins in the symbolism of medieval alchemy to its appearance in film and fiction. Long before nuclear fission was discovered, fantasies of the destroyed planet, the transforming ray, and the white city of the future took root in the popular imagination. At the turn of the twentieth century when limited facts about radioactivity became known, they produced a blurred picture upon which scientists and the public projected their hopes and fears. These fears were magnified during the Cold War, when mushroom clouds no longer needed to be imagined; they appeared on the evening news. Weart examines nuclear anxiety in sources as diverse as Alain Resnais's film Hiroshima Mon Amour, Cormac McCarthy's novel The Road, and the television show The Simpsons. Recognizing how much we remain in thrall to these setpieces of the imagination, Weart hopes, will help us resist manipulation from both sides of the nuclear debate.




Principles of Evolution


Book Description

Principles of Evolution covers all aspects of the subject. Following an introductory section that provides necessary background, it has chapters on the evidence for evolution that cover the fossil record, DNA-sequence homologies, and protein homologies (evo-devo). It also includes a full history of life from the first universal common ancestor, through the rise of the eukaryote and on to the major groups of phyla. This section is followed by one on the mechanism of evolution with chapters on variation, selection and speciation. The main part of the book ends with a chapter on human evolution and this is followed by appendices that expand on the making of fossils, the history of the subject and creationism. What marks this book as different from others on evolution is its systems-biology perspective. This new area focuses on the role of protein networks and on multi-level complexity, and is used in three contexts. First, most biological activity is driven by such networks and this has direct implications for understanding evo-devo and for seeing how variation is initiated, mainly during embryogenesis. Second, it provides the natural language for discussing phylogenetics. Third, evolutionary change involves events at levels ranging from the genome to the ecosystem and systems biology provides a context for integrating material of this complexity. The book assumes a basic grounding in biology but little mathematics as the difficult subject of evolutionary population genetics is mainly covered qualitatively, with major results being discussed and used rather than derived. Principles of Evolution will be an interesting and thought-provoking text for undergraduates and graduates across the biological sciences.