Life Atomic


Book Description

After World War II, the US Atomic Energy Commission (AEC) began mass-producing radioisotopes, sending out nearly 64,000 shipments of radioactive materials to scientists and physicians by 1955. Even as the atomic bomb became the focus of Cold War anxiety, radioisotopes represented the government’s efforts to harness the power of the atom for peace—advancing medicine, domestic energy, and foreign relations. In Life Atomic, Angela N. H. Creager tells the story of how these radioisotopes, which were simultaneously scientific tools and political icons, transformed biomedicine and ecology. Government-produced radioisotopes provided physicians with new tools for diagnosis and therapy, specifically cancer therapy, and enabled biologists to trace molecular transformations. Yet the government’s attempt to present radioisotopes as marvelous dividends of the atomic age was undercut in the 1950s by the fallout debates, as scientists and citizens recognized the hazards of low-level radiation. Creager reveals that growing consciousness of the danger of radioactivity did not reduce the demand for radioisotopes at hospitals and laboratories, but it did change their popular representation from a therapeutic agent to an environmental poison. She then demonstrates how, by the late twentieth century, public fear of radioactivity overshadowed any appreciation of the positive consequences of the AEC’s provision of radioisotopes for research and medicine.




Radioisotopes and the Age of the Earth


Book Description

This book presents part two of the research results of an eight-year project titled Radioisotopes and the Age of the Earth (RATE). A previous volume presenting part one of the research was published in 2000, titled Radioisotopes and the age of the Earth : a young-earth creationist research initiative. RATE Project sponsors included Institute for Creation Research and Creation Research Society, with start-up support from Answers in Genesis Ministries. Researchers included seven scientists and one biblical Hebrew scholar: Dr. Steven A. Austin, Dr. Andrew Snelling, Dr. John Baumgardner, Dr. Eugene F. Chaffin, Dr. Donald B. DeYoung, Dr. Russell Humphreys, Dr. Larry Vardiman and Dr. Steven W. Boyd.




Radioisotopes in the Human Body


Book Description

Radioisotopes in the Human Body: Physical and Biological Aspects provides a unified presentation of the manner in which radioisotopes are deposited in the human body. This book focuses on bone structure and the irradiation of bone because so many of the available radioisotopes are deposited in bone. Organized into nine chapters, this book begins with an overview of the physical considerations that are significant to the dosimetry of internally deposited radioisotopes. This text then examines the structure and formation of bone in some detail. Other chapters consider the importance of bone in relation to potential radiation damage. This book discusses as well the relationship between radiation dose and radiobiological effects. The final chapter deals with the case of internal irradiation by radioisotopes. This book is a valuable resource for biologists, health physicists, scientists, and students. Radiation protection officers and individuals who have responsibilities for the safe use of radioactive substances will also find this book useful.







Nuclear Batteries and Radioisotopes


Book Description

This book explains the physics of nuclear battery operation. It provides a comprehensive background that allows readers to understand all past and future developments in the field. The supply and cost of radioisotopes for use in applications (focused on nuclear batteries) are covered in the initial sections of the text. The interaction of ionizing radiation with matter is discussed as applied to nuclear batteries. The physics of interfacing the radioisotopes to the transducers which represent the energy conversion mechanism for nuclear batteries are described for possible nuclear battery configurations. Last but not least the efficiencies of nuclear battery configurations are discussed combined with a review of the literature on nuclear battery research.




Radioisotope Gauges for Industrial Process Measurements


Book Description

In order to fully utilise nucleonic measurement principles and their applications, it is important to have an understanding of the underlying physics. Radioisotope Gauges for Industrial Process Measurements combines theoretical background with practical experience in order to present an accessible overview of the use of radioisotopes in industry. This unique book explains the modes of operation of installed gauges and presents nucleonic methods relevant to measurement problems. The first part of the book deals with radiation sources, the interaction of radiation with matter and radiation detectors. The second part explains the different measurement principles used for industrial gauges and the last part of the book covers industrial applications. This book also: Features a concise introduction to atomic and nuclear physics. Presents a range of nucleonic measurement methods and highlights their application to a variety of problems. Contains an overview of electronics, measurement accuracy, safety and standards. Considers processes and demands, design strategies and practical realisation of measurement systems. Provides many practical engineering examples. Offering a comprehensive coverage of engineering applications, this book is an essential tool for electrical, electronic and instrument engineers in the oil and chemicals processing sectors. It is also a valuable reference to graduate students and physicists involved in nuclear radiation measurement, medical applications, radiochemical research, environmental monitoring and chemical engineering.




Radioisotope and Radiation Physics


Book Description

Radioisotope and Radiation Physics: An Introduction is based on lectures delivered on a course in the use of radioactive isotopes. The course is organized by the B. Kidric Institute of Nuclear Sciences in Belgrade. The book presents the fundamental concepts on the use of radioisotopes. It aims to help the reader handle the quantitative data given in specialized handbooks and promote further reading. The subjects covered in the text include the Feynman diagrams and virtual particles; the phenomena of collisions between particles and atomic systems; and the penetration of alpha, beta, and gamma radiation. The text is intended to professionals in other fields who are interested in the study of radioisotopes and radiation who only has a very rudimentary background in physics.




The Supply of Medical Isotopes


Book Description

This report explores the main reasons behind the unreliable supply of Technetium-99m (Tc-99m) in health-care systems and policy options to address the issue. Tc-99m is used in 85% of nuclear medicine diagnostic scans performed worldwide – around 30 million patient examinations every year. These scans allow diagnoses of diseases in many parts of the human body, including the skeleton, heart and circulatory system, and the brain. Medical isotopes are subject to radioactive decay and have to be delivered just-in-time through a complex supply chain. However, ageing production facilities and a lack of investment have made the supply of Tc-99m unreliable. This report analyses the use and substitutability of Tc-99m in health care, health-care provider payment mechanisms for scans, and the structure of the supply chain. It concludes that the main reasons for unreliable supply are that production is not economically viable and that the structure of the supply chain prevents producers from charging prices that reflect the full costs of production and supply.




Isotopes for Medicine and the Life Sciences


Book Description

Radioactive isotopes and enriched stable isotopes are used widely in medicine, agriculture, industry, and science, where their application allows us to perform many tasks more accurately, more simply, less expensively, and more quickly than would otherwise be possible. Indeed, in many casesâ€"for example, biological tracersâ€"there is no alternative. In a stellar example of "technology transfer" that began before the term was popular, the Department of Energy (DOE) and its predecessors has supported the development and application of isotopes and their transfer to the private sector. The DOE is now at an important crossroads: Isotope production has suffered as support for DOE's laboratories has declined. In response to a DOE request, this book is an intensive examination of isotope production and availability, including the education and training of those who will be needed to sustain the flow of radioactive and stable materials from their sources to the laboratories and medical care facilities in which they are used. Chapters include an examination of enriched stable isotopes; reactor and accelerator-produced radionuclides; partnerships among industries, national laboratories, and universities; and national isotope policy.




Radioisotope Power Systems


Book Description

Spacecraft require electrical energy. This energy must be available in the outer reaches of the solar system where sunlight is very faint. It must be available through lunar nights that last for 14 days, through long periods of dark and cold at the higher latitudes on Mars, and in high-radiation fields such as those around Jupiter. Radioisotope power systems (RPSs) are the only available power source that can operate unconstrained in these environments for the long periods of time needed to accomplish many missions, and plutonium-238 (238Pu) is the only practical isotope for fueling them. Plutonium-238 does not occur in nature. The committee does not believe that there is any additional 238Pu (or any operational 238Pu production facilities) available anywhere in the world.The total amount of 238Pu available for NASA is fixed, and essentially all of it is already dedicated to support several pending missions-the Mars Science Laboratory, Discovery 12, the Outer Planets Flagship 1 (OPF 1), and (perhaps) a small number of additional missions with a very small demand for 238Pu. If the status quo persists, the United States will not be able to provide RPSs for any subsequent missions.