Rail Quality and Maintenance for Modern Railway Operation


Book Description

In April 1990 a conference was held at the Cracow Institute of Technology, Cracow, Poland. The title of that conference was "Residual Stresses in Rails - Effects on Rail Integrity and Railroad Economics" and its themes were the measurement and prediction of residual stresses in rails, but, as the sub-title suggests, the intention was also to provide a link between research and its application to the practical railway world. At the Cracow conference there were 40 participants with 5 railways and 5 rail makers being represented and 25 papers were given. The Cracow conference was a success, and by March 1991 its off-spring, "The International Conference on Rail Quality and Maintenance for Modern Railway Operations", was conceived and birth was ultimately given in June 1992 at the Technical University, Delft. It turned out to be some baby, with 112 delegates from 24 countries taking part! As with its predecessor, the conference was to provide a forum for the exchange of ideas between research investigators, rail makers and railway engineers. A cursory examination of the list of participants suggests that about 57% were from the railway industry, 34% from universities and other research institutions and 9% from the steel industry. Bearing in mind that some of the railway industry participants were from their respective research and development organisations the balance of interests was about right.













Handbook of Railway Vehicle Dynamics


Book Description

Understanding the dynamics of railway vehicles, and indeed of the entire vehicle-track system, is critical to ensuring safe and economical operation of modern railways. As the challenges of higher speed and higher loads with very high levels of safety require ever more innovative engineering solutions, better understanding of the technical issues a




Railroad Vehicle Dynamics


Book Description

Computational multibody system approaches have been extensively used in modeling many physical systems. Railroad Vehicle Dynamics: A Computational Approach presents computational multibody system formulations that can be used to develop computer models for complex railroad vehicle systems. Focusing on nonlinear formulations, this book explains the limitations of linearized formulations that are frequently used in analysis. Vehicle/rail interaction, a distinguishing feature of railroad vehicle systems, requires a special force or kinematic element to be included in multibody system algorithms. Using this approach, the authors address and solve geometric problems that are specific to railroad vehicle systems.







Wheel-Rail Interface Handbook


Book Description

Many of the engineering problems of particular importance to railways arise at interfaces and the safety-critical role of the wheel/rail interface is widely acknowledged. Better understanding of wheel/rail interfaces is therefore critical to improving the capacity, reliability and safety of the railway system.Wheel-rail interface handbook is a one-stop reference for railway engineering practitioners and academic researchers. Part one provides the fundamentals of contact mechanics, wear, fatigue and lubrication as well as state-of-the-art research and emerging technologies related to the wheel/rail interface and its management. Part two offers an overview of industrial practice from several different regions of the world, thereby providing an invaluable international perspective with practitioners' experience of managing the wheel/rail interface in a variety of environments and circumstances.This comprehensive volume will enable practising railway engineers, in whatever discipline of railway engineering – infrastructure, vehicle design and safety, and so on – to enhance their understanding of wheel/rail issues, which have a major influence on the running of a reliable, efficient and safe railway. - One-stop reference on the important topic of wheel rail-interfaces - Presents the fundamentals of contact mechanics, wear, fatigue and lubrication - Examines state-of-the-art research and emerging technologies related to wheel-rail interface and its management




Mathematical Foundation of Railroad Vehicle Systems


Book Description

MASTER AND INTEGRATE THE GEOMETRY AND MECHANICS OF RAILROAD VEHICLE SYSTEM ENGINEERING WITH ONE PRACTICAL RESOURCE Mathematical Foundation of Railroad Vehicle Systems: Geometry and Mechanics delivers a comprehensive treatment of the mathematical foundations of railroad vehicle systems. The book includes a strong emphasis on the integration of geometry and mechanics to create an accurate and accessible formulation of nonlinear dynamic equations and general computational algorithms that can be effectively used in the virtual prototyping, analysis, design, and performance evaluation of railroad vehicle systems. Using basic concepts, formulations, and computational algorithms, including mechanics-based approaches like the absolute nodal coordinate formulation (ANCF), readers will understand how to integrate the geometry and mechanics of railroad vehicle systems. The book also discusses new problems and issues in this area and describes how geometric and mechanical approaches can be used in derailment investigations. Mathematical Foundation of Railroad Vehicle Systems covers: The mathematical foundation of railroad vehicle systems through the integration of geometry and mechanics Basic concepts, formulations, and computational algorithms used in railroad vehicle system dynamics New mechanics-based approaches, like the ANCF, and their use to achieve an integration of geometry and mechanics Use of geometry and mechanics to study derailments New problems and issues in the area of railroad vehicle systems Designed for researchers and practicing engineers who work with railroad vehicle systems, Mathematical Foundation of Railroad Vehicle Systems: Geometry and Mechanics can also be used in senior undergraduate and graduate mechanical, civil, and electrical engineering programs and courses.




Handbook of Residual Stress and Deformation of Steel


Book Description

Annotation Examines the factors that contribute to overall steel deformation problems. The 27 articles address the effect of materials and processing, the measurement and prediction of residual stress and distortion, and residual stress formation in the shaping of materials, during hardening processes, and during manufacturing processes. Some of the topics are the stability and relaxation behavior of macro and micro residual stresses, stress determination in coatings, the effects of process equipment design, the application of metallo- thermo-mechanic to quenching, inducing compressive stresses through controlled shot peening, and the origin and assessment of residual stresses during welding and brazing. Annotation c. Book News, Inc., Portland, OR (booknews.com)