Accurate Scientific Computations


Book Description

Mathematics of Computing -- Numerical Analysis.




Recent Progress in Computational and Applied PDES


Book Description

The book discusses some key scientific and technological developments in computational and applied partial differential equations. It covers many areas of scientific computing, including multigrid methods, image processing, finite element analysis and adaptive computations. It also covers software technology, algorithms and applications. Most papers are of research level, and are contributed by some well-known mathematicians and computer scientists. The book will be useful to engineers, computational scientists and graduate students.




Finite Element Methods


Book Description

""Based on the proceedings of the first conference on superconvergence held recently at the University of Jyvaskyla, Finland. Presents reviewed papers focusing on superconvergence phenomena in the finite element method. Surveys for the first time all known superconvergence techniques, including their proofs.




Numerical Solution of Elliptic Problems


Book Description

A study of the art and science of solving elliptic problems numerically, with an emphasis on problems that have important scientific and engineering applications, and that are solvable at moderate cost on computing machines.




A Posteriori Error Estimation in Finite Element Analysis


Book Description

An up-to-date, one-stop reference-complete with applications This volume presents the most up-to-date information available on aposteriori error estimation for finite element approximation inmechanics and mathematics. It emphasizes methods for ellipticboundary value problems and includes applications to incompressibleflow and nonlinear problems. Recent years have seen an explosion in the study of a posteriorierror estimators due to their remarkable influence on improvingboth accuracy and reliability in scientific computing. In an effortto provide an accessible source, the authors have sought to presentkey ideas and common principles on a sound mathematicalfooting. Topics covered in this timely reference include: * Implicit and explicit a posteriori error estimators * Recovery-based error estimators * Estimators, indicators, and hierarchic bases * The equilibrated residual method * Methodology for the comparison of estimators * Estimation of errors in quantities of interest A Posteriori Error Estimation in Finite Element Analysis is a lucidand convenient resource for researchers in almost any field offinite element methods, and for applied mathematicians andengineers who have an interest in error estimation and/or finiteelements.




Spectral Approximation of Linear Operators


Book Description

Originally published: New York: Academic Press, 1983.




Mechanics Today


Book Description

Mechanics Today, Volume 2 consists of four articles considering applied mechanics. Each article starts with a discussion of fundamentals and continues with a presentation of analytical and experimental results. Topics discussed in the first three articles include theory of creep and shrinkage in concrete structures; nonequilibrium thermodynamics of continua; and mathematical aspects of finite-element approximations in continuum mechanics. The last article shows the utilization of exact simple wave solutions for the construction of uniform approximations for waves in nonlinear dissipative or bounded media. This book is useful to specialists and accessible to non-experts but with sufficient background of the subject matter.




The Scaled Boundary Finite Element Method


Book Description

An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.







Optimization in Solving Elliptic Problems


Book Description

Optimization in Solving Elliptic Problems focuses on one of the most interesting and challenging problems of computational mathematics - the optimization of numerical algorithms for solving elliptic problems. It presents detailed discussions of how asymptotically optimal algorithms may be applied to elliptic problems to obtain numerical solutions meeting certain specified requirements. Beginning with an outline of the fundamental principles of numerical methods, this book describes how to construct special modifications of classical finite element methods such that for the arising grid systems, asymptotically optimal iterative methods can be applied. Optimization in Solving Elliptic Problems describes the construction of computational algorithms resulting in the required accuracy of a solution and having a pre-determined computational complexity. Construction of asymptotically optimal algorithms is demonstrated for multi-dimensional elliptic boundary value problems under general conditions. In addition, algorithms are developed for eigenvalue problems and Navier-Stokes problems. The development of these algorithms is based on detailed discussions of topics that include accuracy estimates of projective and difference methods, topologically equivalent grids and triangulations, general theorems on convergence of iterative methods, mixed finite element methods for Stokes-type problems, methods of solving fourth-order problems, and methods for solving classical elasticity problems. Furthermore, the text provides methods for managing basic iterative methods such as domain decomposition and multigrid methods. These methods, clearly developed and explained in the text, may be used to develop algorithms for solving applied elliptic problems. The mathematics necessary to understand the development of such algorithms is provided in the introductory material within the text, and common specifications of algorithms that have been developed for typical problems in mathema