Book Description
Random Differential Inequalities
Author : Lakshmikantham
Publisher : Academic Press
Page : 225 pages
File Size : 19,67 MB
Release : 1981-01-13
Category : Computers
ISBN : 0080956580
Random Differential Inequalities
Author : Xiaoying Han
Publisher : Springer
Page : 252 pages
File Size : 47,44 MB
Release : 2017-10-25
Category : Mathematics
ISBN : 981106265X
This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs). RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems. They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor expansions in the usual sense. However, Taylor-like expansions can be derived for RODEs using an iterated application of the appropriate chain rule in integral form, and represent the starting point for the systematic derivation of consistent higher order numerical schemes for RODEs. The book is directed at a wide range of readers in applied and computational mathematics and related areas as well as readers who are interested in the applications of mathematical models involving random effects, in particular in the biological sciences.The level of this book is suitable for graduate students in applied mathematics and related areas, computational sciences and systems biology. A basic knowledge of ordinary differential equations and numerical analysis is required.
Author : Stéphane Boucheron
Publisher : Oxford University Press
Page : 492 pages
File Size : 37,42 MB
Release : 2013-02-07
Category : Mathematics
ISBN : 0199535256
Describes the interplay between the probabilistic structure (independence) and a variety of tools ranging from functional inequalities to transportation arguments to information theory. Applications to the study of empirical processes, random projections, random matrix theory, and threshold phenomena are also presented.
Author :
Publisher : Elsevier
Page : 623 pages
File Size : 12,6 MB
Release : 1997-11-12
Category : Mathematics
ISBN : 0080534643
Inequalities for Differential and Integral Equations has long been needed; it contains material which is hard to find in other books. Written by a major contributor to the field, this comprehensive resource contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools in the development of applications in the theory of new classes of differential and integral equations. For researchers working in this area, it will be a valuable source of reference and inspiration. It could also be used as the text for an advanced graduate course. - Covers a variety of linear and nonlinear inequalities which find widespread applications in the theory of various classes of differential and integral equations - Contains many inequalities which have only recently appeared in literature and cannot yet be found in other books - Provides a valuable reference to engineers and graduate students
Author : Lawrence C. Evans
Publisher : American Mathematical Soc.
Page : 161 pages
File Size : 26,54 MB
Release : 2012-12-11
Category : Mathematics
ISBN : 1470410540
These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).
Author : Walter A. Strauss
Publisher : John Wiley & Sons
Page : 467 pages
File Size : 38,39 MB
Release : 2007-12-21
Category : Mathematics
ISBN : 0470054565
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Author : Gangaram S Ladde
Publisher : World Scientific
Page : 355 pages
File Size : 42,53 MB
Release : 2024-04-22
Category : Mathematics
ISBN : 981128749X
Continuous state dynamic models can be reformulated into discrete state processes. This process generates numerical schemes that lead theoretical iterative schemes. This type of method of stochastic modelling generates three basic problems. First, the fundamental properties of solution, namely, existence, uniqueness, measurability, continuous dependence on system parameters depend on mode of convergence. Second, the basic probabilistic and statistical properties, namely, the behavior of mean, variance, moments of solutions are described as qualitative/quantitative properties of solution process. We observe that the nature of probability distribution or density functions possess the qualitative/quantitative properties of iterative prosses as a special case. Finally, deterministic versus stochastic modelling of dynamic processes is to what extent the stochastic mathematical model differs from the corresponding deterministic model in the absence of random disturbances or fluctuations and uncertainties.Most literature in this subject was developed in the 1950s, and focused on the theory of systems of continuous and discrete-time deterministic; however, continuous-time and its approximation schemes of stochastic differential equations faced the solutions outlined above and made slow progress in developing problems. This monograph addresses these problems by presenting an account of stochastic versus deterministic issues in discrete state dynamic systems in a systematic and unified way.
Author : Harry Kesten
Publisher : Springer Science & Business Media
Page : 358 pages
File Size : 16,60 MB
Release : 2013-03-14
Category : Mathematics
ISBN : 3662094444
Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or time are taken to be discrete. This volume deals with areas in which the discrete version is more natural than the continuous one, perhaps even the only one than can be formulated without complicated constructions and machinery. The 5 papers of this volume discuss problems in which there has been significant progress in the last few years; they are motivated by, or have been developed in parallel with, statistical physics. They include questions about asymptotic shape for stochastic growth models and for random clusters; existence, location and properties of phase transitions; speed of convergence to equilibrium in Markov chains, and in particular for Markov chains based on models with a phase transition; cut-off phenomena for random walks. The articles can be read independently of each other. Their unifying theme is that of models built on discrete spaces or graphs. Such models are often easy to formulate. Correspondingly, the book requires comparatively little previous knowledge of the machinery of probability.
Author : Vasile Dragan
Publisher : Springer Science & Business Media
Page : 320 pages
File Size : 43,41 MB
Release : 2007-02-03
Category : Science
ISBN : 0387359249
The book covers the necessary pre-requisites from probability theory, stochastic processes, stochastic integrals and stochastic differential equations. It includes detailed treatment of the fundamental properties of stochastic systems subjected both to multiplicative white noise and to jump Markovian perturbations. Systematic presentation leads the reader in a natural way to the original results. New theoretical results accompanied by detailed numerical examples, and the book proposes new numerical algorithms to solve coupled matrix algebraic Riccati equations.
Author : Victor de la Peña
Publisher : Springer Science & Business Media
Page : 413 pages
File Size : 43,24 MB
Release : 1999
Category : Mathematics
ISBN : 0387986162
A friendly and systematic introduction to the theory and applications. The book begins with the sums of independent random variables and vectors, with maximal inequalities and sharp estimates on moments, which are later used to develop and interpret decoupling inequalities. Decoupling is first introduced as it applies to randomly stopped processes and unbiased estimation. The authors then proceed with the theory of decoupling in full generality, paying special attention to comparison and interplay between martingale and decoupling theory, and to applications. These include limit theorems, moment and exponential inequalities for martingales and more general dependence structures, biostatistical implications, and moment convergence in Anscombe's theorem and Wald's equation for U--statistics. Addressed to researchers in probability and statistics and to graduates, the expositon is at the level of a second graduate probability course, with a good portion of the material fit for use in a first year course.