Random Signals Estimation and Identification


Book Description

The techniques used for the extraction of information from received or ob served signals are applicable in many diverse areas such as radar, sonar, communications, geophysics, remote sensing, acoustics, meteorology, med ical imaging systems, and electronics warfare. The received signal is usually disturbed by thermal, electrical, atmospheric, channel, or intentional inter ferences. The received signal cannot be predicted deterministically, so that statistical methods are needed to describe the signal. In general, therefore, any received signal is analyzed as a random signal or process. The purpose of this book is to provide an elementary introduction to random signal analysis, estimation, filtering, and identification. The emphasis of the book is on the computational aspects as well as presentation of com mon analytical tools for systems involving random signals. The book covers random processes, stationary signals, spectral analysis, estimation, optimiz ation, detection, spectrum estimation, prediction, filtering, and identification. The book is addressed to practicing engineers and scientists. It can be used as a text for courses in the areas of random processes, estimation theory, and system identification by undergraduates and graduate students in engineer ing and science with some background in probability and linear algebra. Part of the book has been used by the author while teaching at State University of New York at Buffalo and California State University at Long Beach. Some of the algorithms presented in this book have been successfully applied to industrial projects.




An Introduction to Signal Detection and Estimation


Book Description

The purpose of this book is to introduce the reader to the basic theory of signal detection and estimation. It is assumed that the reader has a working knowledge of applied probabil ity and random processes such as that taught in a typical first-semester graduate engineering course on these subjects. This material is covered, for example, in the book by Wong (1983) in this series. More advanced concepts in these areas are introduced where needed, primarily in Chapters VI and VII, where continuous-time problems are treated. This book is adapted from a one-semester, second-tier graduate course taught at the University of Illinois. However, this material can also be used for a shorter or first-tier course by restricting coverage to Chapters I through V, which for the most part can be read with a background of only the basics of applied probability, including random vectors and conditional expectations. Sufficient background for the latter option is given for exam pIe in the book by Thomas (1986), also in this series.




Stochastic Processes, Estimation, and Control


Book Description

The authors provide a comprehensive treatment of stochastic systems from the foundations of probability to stochastic optimal control. The book covers discrete- and continuous-time stochastic dynamic systems leading to the derivation of the Kalman filter, its properties, and its relation to the frequency domain Wiener filter aswell as the dynamic programming derivation of the linear quadratic Gaussian (LQG) and the linear exponential Gaussian (LEG) controllers and their relation to HÝsubscript 2¨ and HÝsubscript Ýinfinity¨¨ controllers and system robustness. This book is suitable for first-year graduate students in electrical, mechanical, chemical, and aerospace engineering specializing in systems and control. Students in computer science, economics, and possibly business will also find it useful.




Principles of System Identification


Book Description

Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.The MATLAB scripts and SIMULINK models used as examples and case studies in the book are also available on the author's website: http://arunkt.wix.com/homepage#!textbook/c397




Random Signal Processing


Book Description

This book covers random signals and random processes along with estimation of probability density function, estimation of energy spectral density and power spectral density. The properties of random processes and signal modelling are discussed with basic communication theory estimation and detection. MATLAB simulations are included for each concept with output of the program with case studies and project ideas. The chapters progressively introduce and explain the concepts of random signals and cover multiple applications for signal processing. The book is designed to cater to a wide audience starting from the undergraduates (electronics, electrical, instrumentation, computer, and telecommunication engineering) to the researchers working in the pertinent fields. Key Features: • Aimed at random signal processing with parametric signal processing-using appropriate segment size. • Covers speech, image, medical images, EEG and ECG signal processing. • Reviews optimal detection and estimation. • Discusses parametric modeling and signal processing in transform domain. • Includes MATLAB codes and relevant exercises, case studies and solved examples including multiple choice questions




Stochastic Systems


Book Description

Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.




An Introduction to Statistical Signal Processing


Book Description

This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.




Statistical Signal Processing


Book Description

This book embraces the many mathematical procedures that engineers and statisticians use to draw inference from imperfect or incomplete measurements. This book presents the fundamental ideas in statistical signal processing along four distinct lines: mathematical and statistical preliminaries; decision theory; estimation theory; and time series analysis.




Linear Stochastic Systems


Book Description

This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.




Stochastic Signal Processing


Book Description

This book intends to provide graduate students in electrical and information science a solid background in stochastic signal processing. Chapter one introduces random signals through measurement noise. Chapter two develops fundamental concepts in probability theory and statistical methods. Chapter three is devoted to stochastic processes, stochastic system theory, and statistical signal processing. The examples are carefully selected. Some of them are aimed at motivating students interested in advanced topics such as signal detection, estimation, spectral analysis and system identification. Problems with solutions and MATLAB exercises are included to encourage self study by researchers or engineers in related areas. The most important concepts in statistics are presented so that linear systems and nonlinear ones as rectifiers with random input and output signals have proper mathematical description and allow statistical inference. Such systems are fundamental to many engineering areas, for example, electronics, measurements, communications and control.