Complex Variables for Scientists and Engineers


Book Description

Outstanding undergraduate text provides a thorough understanding of fundamentals and creates the basis for higher-level courses. Numerous examples and extensive exercise sections of varying difficulty, plus answers to selected exercises. 1990 edition.




Probability Distributions Involving Gaussian Random Variables


Book Description

This handbook, now available in paperback, brings together a comprehensive collection of mathematical material in one location. It also offers a variety of new results interpreted in a form that is particularly useful to engineers, scientists, and applied mathematicians. The handbook is not specific to fixed research areas, but rather it has a generic flavor that can be applied by anyone working with probabilistic and stochastic analysis and modeling. Classic results are presented in their final form without derivation or discussion, allowing for much material to be condensed into one volume.




Probability Distributions Involving Gaussian Random Variables


Book Description

This handbook, now available in paperback, brings together a comprehensive collection of mathematical material in one location. It also offers a variety of new results interpreted in a form that is particularly useful to engineers, scientists, and applied mathematicians. The handbook is not specific to fixed research areas, but rather it has a generic flavor that can be applied by anyone working with probabilistic and stochastic analysis and modeling. Classic results are presented in their final form without derivation or discussion, allowing for much material to be condensed into one volume.










Random Processes for Engineers


Book Description

This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).




Introduction to Probability and Statistics for Engineers


Book Description

The theory of probability and mathematical statistics is becoming an indispensable discipline in many branches of science and engineering. This is caused by increasing significance of various uncertainties affecting performance of complex technological systems. Fundamental concepts and procedures used in analysis of these systems are often based on the theory of probability and mathematical statistics. The book sets out fundamental principles of the probability theory, supplemented by theoretical models of random variables, evaluation of experimental data, sampling theory, distribution updating and tests of statistical hypotheses. Basic concepts of Bayesian approach to probability and two-dimensional random variables, are also covered. Examples of reliability analysis and risk assessment of technological systems are used throughout the book to illustrate basic theoretical concepts and their applications. The primary audience for the book includes undergraduate and graduate students of science and engineering, scientific workers and engineers and specialists in the field of reliability analysis and risk assessment. Except basic knowledge of undergraduate mathematics no special prerequisite is required.




Probability, Random Variables, and Data Analytics with Engineering Applications


Book Description

This book bridges the gap between theory and applications that currently exist in undergraduate engineering probability textbooks. It offers examples and exercises using data (sets) in addition to traditional analytical and conceptual ones. Conceptual topics such as one and two random variables, transformations, etc. are presented with a focus on applications. Data analytics related portions of the book offer detailed coverage of receiver operating characteristics curves, parametric and nonparametric hypothesis testing, bootstrapping, performance analysis of machine vision and clinical diagnostic systems, and so on. With Excel spreadsheets of data provided, the book offers a balanced mix of traditional topics and data analytics expanding the scope, diversity, and applications of engineering probability. This makes the contents of the book relevant to current and future applications students are likely to encounter in their endeavors after completion of their studies. A full suite of classroom material is included. A solutions manual is available for instructors. Bridges the gap between conceptual topics and data analytics through appropriate examples and exercises; Features 100's of exercises comprising of traditional analytical ones and others based on data sets relevant to machine vision, machine learning and medical diagnostics; Intersperses analytical approaches with computational ones, providing two-level verifications of a majority of examples and exercises.




Probability, Statistics, and Reliability for Engineers and Scientists, Third Edition


Book Description

In a technological society, virtually every engineer and scientist needs to be able to collect, analyze, interpret, and properly use vast arrays of data. This means acquiring a solid foundation in the methods of data analysis and synthesis. Understanding the theoretical aspects is important, but learning to properly apply the theory to real-world problems is essential. Probability, Statistics, and Reliability for Engineers and Scientists, Third Edition introduces the fundamentals of probability, statistics, reliability, and risk methods to engineers and scientists for the purposes of data and uncertainty analysis and modeling in support of decision making. The third edition of this bestselling text presents probability, statistics, reliability, and risk methods with an ideal balance of theory and applications. Clearly written and firmly focused on the practical use of these methods, it places increased emphasis on simulation, particularly as a modeling tool, applying it progressively with projects that continue in each chapter. This provides a measure of continuity and shows the broad use of simulation as a computational tool to inform decision making processes. This edition also features expanded discussions of the analysis of variance, including single- and two-factor analyses, and a thorough treatment of Monte Carlo simulation. The authors not only clearly establish the limitations, advantages, and disadvantages of each method, but also show that data analysis is a continuum rather than the isolated application of different methods. Like its predecessors, this book continues to serve its purpose well as both a textbook and a reference. Ultimately, readers will find the content of great value in problem solving and decision making, particularly in practical applications.