Rank-Based Methods for Shrinkage and Selection


Book Description

Rank-Based Methods for Shrinkage and Selection A practical and hands-on guide to the theory and methodology of statistical estimation based on rank Robust statistics is an important field in contemporary mathematics and applied statistical methods. Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning describes techniques to produce higher quality data analysis in shrinkage and subset selection to obtain parsimonious models with outlier-free prediction. This book is intended for statisticians, economists, biostatisticians, data scientists and graduate students. Rank-Based Methods for Shrinkage and Selection elaborates on rank-based theory and application in machine learning to robustify the least squares methodology. It also includes: Development of rank theory and application of shrinkage and selection Methodology for robust data science using penalized rank estimators Theory and methods of penalized rank dispersion for ridge, LASSO and Enet Topics include Liu regression, high-dimension, and AR(p) Novel rank-based logistic regression and neural networks Problem sets include R code to demonstrate its use in machine learning




Robust Rank-Based and Nonparametric Methods


Book Description

The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with readers and implemented. This book is developed from the International Conference on Robust Rank-Based and Nonparametric Methods, held at Western Michigan University in April 2015.





Book Description




Uncertainty Quantification Techniques in Statistics


Book Description

Uncertainty quantification (UQ) is a mainstream research topic in applied mathematics and statistics. To identify UQ problems, diverse modern techniques for large and complex data analyses have been developed in applied mathematics, computer science, and statistics. This Special Issue of Mathematics (ISSN 2227-7390) includes diverse modern data analysis methods such as skew-reflected-Gompertz information quantifiers with application to sea surface temperature records, the performance of variable selection and classification via a rank-based classifier, two-stage classification with SIS using a new filter ranking method in high throughput data, an estimation of sensitive attribute applying geometric distribution under probability proportional to size sampling, combination of ensembles of regularized regression models with resampling-based lasso feature selection in high dimensional data, robust linear trend test for low-coverage next-generation sequence data controlling for covariates, and comparing groups of decision-making units in efficiency based on semiparametric regression.




Tensors for Data Processing


Book Description

Tensors for Data Processing: Theory, Methods and Applications presents both classical and state-of-the-art methods on tensor computation for data processing, covering computation theories, processing methods, computing and engineering applications, with an emphasis on techniques for data processing. This reference is ideal for students, researchers and industry developers who want to understand and use tensor-based data processing theories and methods. As a higher-order generalization of a matrix, tensor-based processing can avoid multi-linear data structure loss that occurs in classical matrix-based data processing methods. This move from matrix to tensors is beneficial for many diverse application areas, including signal processing, computer science, acoustics, neuroscience, communication, medical engineering, seismology, psychometric, chemometrics, biometric, quantum physics and quantum chemistry. - Provides a complete reference on classical and state-of-the-art tensor-based methods for data processing - Includes a wide range of applications from different disciplines - Gives guidance for their application




Advances in Information Retrieval


Book Description

This book constitutes the proceedings of the 35th European Conference on IR Research, ECIR 2013, held in Moscow, Russia, in March 2013. The 55 full papers, 38 poster papers and 10 demonstrations presented in this volume were carefully reviewed and selected from 287 submissions. The papers are organized in the following topical sections: user aspects; multimedia and cross-media IR; data mining; IR theory and formal models; IR system architectures; classification; Web; event detection; temporal IR, and microblog search. Also included are 4 tutorial and 2 workshop presentations.




Machine Learning and Data Mining in Pattern Recognition


Book Description

This book constitutes the refereed proceedings of the 11th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2015, held in Hamburg, Germany in July 2015. The 41 full papers presented were carefully reviewed and selected from 123 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining.




Mining Massive Data Sets for Security


Book Description

The real power for security applications will come from the synergy of academic and commercial research focusing on the specific issue of security. This book is suitable for those interested in understanding the techniques for handling very large data sets and how to apply them in conjunction for solving security issues.




Robust Nonparametric Statistical Methods


Book Description

Offering an alternative to traditional statistical procedures which are based on least squares fitting, the authors cover such topics as one and two sample location models, linear models, and multivariate models. Both theory and applications are examined.




Geo-Spatial Knowledge and Intelligence


Book Description

The two volume proceedings of CCIS 698 and 699 constitutes revised selected papers from the 4th International Conference on Geo-Informatics in Resource Management and Sustainable Ecosystem, GRMSE 2016, held in Hong Kong, China, in November 2016. The total of 118 papers presented in these proceedings were carefully reviewed and selected from 311 submissions. The contributions were organized in topical sections named: smart city in resource management and sustainable ecosystem; spatial data acquisition through RS and GIS in resource management and sustainable ecosystem; ecological and environmental data processing and management; advanced geospatial model and analysis for understanding ecological and environmental processes; applications of geo-informatics in resource management and sustainable ecosystem.