Environmental Modelling, Software and Decision Support


Book Description

The complex and multidisciplinary nature of environmental problems requires that they are dealt with in an integrated manner. Modeling and software have become key instruments used to promote sustainability and improve environmental decision processes, especially through systematic integration of various knowledge and data and their ability to foster learning and help make predictions. This book presents the current state-of-the-art in environmental modeling and software and identifies the future challenges in the field. - State-of-the-art in environmental modeling and software theory and practice for integrated assessment and management serves as a starting point for researchers - Identifies the areas of research and practice required for advancing the requisite knowledge base and tools, and their wider usage - Best practices of environmental modeling enables the reader to select appropriate software and gives the reader tools to integrate natural system dynamics with human dimensions




Environmental Modeling with Stakeholders


Book Description

This volume brings together, in a central text, chapters written by leading scholars working at the intersection of modeling, the natural and social sciences, and public participation. This book presents the current state of knowledge regarding the theory and practice of engaging stakeholders in environmental modeling for decision-making, and includes basic theoretical considerations, an overview of methods and tools available, and case study examples of these principles and methods in practice. Although there has been a significant increase in research and development regarding participatory modeling, a unifying text that provides an overview of the different methodologies available to scholars and a systematic review of case study applications has been largely unavailable. This edited volume seeks to address a gap in the literature and provide a primer that addresses the growing demand to adopt and apply a range of modeling methods that includes the public in environmental assessment and management. The book is divided into two main sections. The first part of the book covers basic considerations for including stakeholders in the modeling process and its intersection with the theory and practice of public participation in environmental decision-making. The second part of the book is devoted to specific applications and products of the various methods available through case study examination. This second part of the book also provides insight from several international experts currently working in the field about their approaches, types of interactions with stakeholders, models produced, and the challenges they perceived based on their practical experiences.




Beyond Evidence-Based Decision Support


Book Description

As the sun sets on the age of unlimited growth and consumption, the call for progressively robust, adaptive and integrated solutions to address 'wicked' environmental problems has ushered in a new paradigm that has fundamentally changed the practices of both science and management. Emphasis on collaborative, integrative and participative approaches has given rise to burgeoning science-practice-policy arrangements while necessitating new tools to support the implementation of increasingly demanding regulation. In the context of water resources, models have emerged as fundamental tools favoured by scientists and practitioners alike, owing to their ability to advance scientific understanding of water systems functioning, while at the same time supporting key decisions in the management, policy and planning of river basins. A wide range of modelling tools have been developed to study the numerous physical, chemical, and biological processes at work, on different spatial and temporal scales, with varying levels of complexity. At the same time, models provide practitioners with a practical tool for supporting 'evidence-based' policy by transposing complex problems into technical, 'manageable' solutions. Yet, their application in practice has proven far from proportional to the amount of time and resources that have been invested in their development.This thesis aims to elucidate the enduring divide between science, practice and policy in the context of a new paradigm of science and management through the lens of modelling tools and their role at the science-practice-policy interface. Using a qualitative approach, we draw from two empirical examples: the PIREN-Seine in France and the CRC for Water Sensitive Cities in Australia. While both share similar challenges, methods and objectives, the fundamental difference in their strategies and approaches offers a rich foundation for comparison. In doing so, we explore the driving forces, implications and potential consequences of the parallel paradigm shifts in science and management, focusing on three main aspects: 1/ the use and utility of modelling tools to support water management, policy and planning; 2/ the different modalities of addressing uncertainty in model-based decision support, and; 3/ the role of new science-practice-policy arrangements. By first retracing the history of production and use of modelling tools in both examples, we seek to understand the nuanced relationship between 'use' and 'utility', offering insight into influencing factors. Next, we turn to the question of uncertainty by analysing how researchers and practitioners reconcile the fundamental challenge of uncertainty in model-based decision support. Delving deeper into the complex, negotiated social process that comprises the decision-making context, we focus on the social construction of ignorance and its role in decision-making. Finally, we examine the macro-level changes brought about by the paradigm shift in science and management. Amidst these changes, we seek to understand the emergence and functions of 'boundary organisations' in this new epoch, and their role in the quest for robust, adaptive and sustainable solutions.




Environmental Modeling


Book Description

The book has two aims: to introduce basic concepts of environmental modelling and to facilitate the application of the concepts using modern numerical tools such as MATLAB. It is targeted at all natural scientists dealing with the environment: process and chemical engineers, physicists, chemists, biologists, biochemists, hydrogeologists, geochemists and ecologists. MATLAB was chosen as the major computer tool for modeling, firstly because it is unique in it's capabilities, and secondly because it is available in most academic institutions, in all universities and in the research departments of many companies. In the 2nd edition many chapters will include updated and extended material. In addition the MATLAB command index will be updated and a new chapter on numerical methods will be added. For the second edition of 'Environmental Modeling' the first edition was completely revised. Text and figures were adapted to the recent MATLAB® version. Several chapters were extended. Correspondingly the index of MATLAB commands was extended considerably, which makes the book even more suitable to be used as a reference work by novices. Finally an introduction into numerical methods was added as a new chapter. “/p>




Environmental Modeling


Book Description

Increasingly used to represent climatic, biogeochemical, and ecological systems, computer modeling has become an important tool that should be in every environmental professional’s toolbox. Environmental Modeling: A Practical Introduction is just what it purports to be, a practical introduction to the various methods, techniques, and skills required for computerized environmental modeling. Exploring the broad arena of environmental modeling, the book demonstrates how to represent an environmental problem in conceptual terms, formalize the conceptual model using mathematical expressions, convert the mathematical model into a program that can be run on a desktop or laptop computer, and examine the results produced by the computational model. Equally important, the book imparts skills that allow you to develop, implement, and experiment with a range of computerized environmental models. The emphasis is on active engagement in the modeling process rather than on passive learning about a suite of well-established models. The author takes a practical approach throughout, one that does not get bogged down in the details of the underlying mathematics and that encourages learning through “hands on” experimentation. He provides a set of software tools and data sets that you can use to work through the various examples and exercises presented in each chapter, as well as presentational material and handouts for course tutors. Comprehensive and up-to-date, the book discusses how computational models can be used to represent environmental systems and illustrates how such models improve understanding of the ways in which environmental systems function.




Environmental Modelling


Book Description

The global environment is a complex mix of interlinked processes, about which observation can tell us a great deal. This book shows how modelling can be used to explain experimental observations, and how these observations - and data gathered - can be extrapolated to explain novel situations. It also illustrates how models are actively applied.




Environmental Modeling


Book Description

Increasingly used to represent climatic, biogeochemical, and ecological systems, computer modeling has become an important tool that should be in every environmental professional’s toolbox. Environmental Modeling: A Practical Introduction is just what it purports to be, a practical introduction to the various methods, techniques, and skills required for computerized environmental modeling. Exploring the broad arena of environmental modeling, the book demonstrates how to represent an environmental problem in conceptual terms, formalize the conceptual model using mathematical expressions, convert the mathematical model into a program that can be run on a desktop or laptop computer, and examine the results produced by the computational model. Equally important, the book imparts skills that allow you to develop, implement, and experiment with a range of computerized environmental models. The emphasis is on active engagement in the modeling process rather than on passive learning about a suite of well-established models. The author takes a practical approach throughout, one that does not get bogged down in the details of the underlying mathematics and that encourages learning through “hands on” experimentation. He provides a set of software tools and data sets that you can use to work through the various examples and exercises presented in each chapter, as well as presentational material and handouts for course tutors. Comprehensive and up-to-date, the book discusses how computational models can be used to represent environmental systems and illustrates how such models improve understanding of the ways in which environmental systems function.




Environmental Modeling for Sustainable Regional Development: System Approaches and Advanced Methods


Book Description

Understanding the advancement of sustainable development is critical to managing human activities to avoid the overexploitation of resources and pollution of the environment beyond tolerable levels. Sustainable development involves not only preservation and care of the environment, but also recognition of the complex relations between economic, social and living systems. Environmental Modeling for Sustainable Regional Development: System Approaches and Advanced Methods presents processing methods and their applications, which are practical for decision making and task management at the regional level as well as for scientific studies in sustainable development assessment. This book serves as a reference guide for post-graduate students in the field of management as well as a critical guide for managers, government officials, and information professionals.




Integrated Environmental Modelling: Design and Tools


Book Description

In the mid 1980's - while a student at the department of econometrics at the Free University - I became an assistant at the Institute for Environmental Studies (IvM) of this university. My main task was assisting with the com putational aspects of the project 'an integrated environmental model: a case study in the Markiezaat area'. A number of methodological problems were for mulated during the operationalization phase of that project, such as the need to develop systematically an integrated model design and to look for means of handling different sources of information. Prof. Dr. P. Nijkamp of the Department of Regional Economics and Drs. L. Hordijk - at that time leader of the economic-technological research group at the IvM - therefore initiated a project proposal to be supported by the Netherlands Organisation for the Advancement of Pure Research (ZWO). Meanwhile I became an assistant to Prof. Dr. P. Nijkamp, surveying qualita ti ve statistical developments in the field of regional inequa li ty analysis. This inventory has been shown to be a relevant basis for the preparation of this book. In spring 1982 I began working at IvM on the above project on integrated environmental modelling.