Rapidly Solidified Alloys


Book Description

This volume details the principles underlying rapid solidification processing, material structure and properties, and their applications. This practical resource presents a manifold approach to both amorphous and crystalline rapidly solidified metallic alloys.;Written by over 30 internationally acclaimed specialists in their respective fields, Rapidly Solidified Alloys: surveys nucleation and growth studies in undercooled melts; examines various processes for the production of rapidly solidified alloys; discusses the compaction of amorphous alloys; describes surface remelting treatments for the rapid solidification of surface layers and the resultant improved workpiece properties; covers the closely related topics of structural relaxation, atomic transport and other thermally induced processes; demonstrates microstructure-property relationships in rapidly quenched crystalline alloy systems and their beneficial effects in applications; and elucidates the basic, engineeering, and applications-oriented magnetic properties of amorphous alloys.;Furnishing more than 2300 literature citations for further study of specific subjects, Rapidly Solidified Alloys is intended for materials, mechanical, product, and civil engineers; metallurgists; magneticians; physicists; physical chemists; and graduate students in these disciplines.




Rapidly Quenched Metals


Book Description

Rapidly Quenched Metals, Volume I covers the proceedings of the Fifth International Conference on Rapidly Quenched Metals, held in Wurzburg, Germany on September 3-7, 1984. The book focuses on amorphous and crystalline metals formed by rapid quenching from the melt. The selection first covers the scope and trends of developments in rapid solidification technology, rapid solidification, and undercooling of liquid metals by rapid quenching. Discussions focus on experimental method, powders, strip, particulate production, consolidation, and alloys and alloy systems. The text then examines the solidification of undercooled liquid alloys entrapped in solid; crystallization kinetics in undercooled droplets; and grain refinement in bulk undercooled alloys. The manuscript tackles the undercooling of niobium-germanium alloys in a 100 meter drop tube; influence of process parameters on the cooling rate of the meltspinning process; and the mechanism of ribbon formation in melt-spun copper and copper-zirconium. The formation and structure of thick sections of rapidly-solidified material by incremental deposition and production of ultrafine dispersions of rare earth oxides in Ti alloys using rapid solidification are also mentioned. The selection is a valuable reference for physicists, chemists, physical metallurgists, and engineers.




The Theory of Transformations in Metals and Alloys


Book Description

This work is a classic reference text for metallurgists, material scientists and crystallographers. The first edition was published in 1965. The first part of that edition was revised and re-published in 1975 and again in 1981. The present two-part set represents the eagerly awaited full revision by the author of his seminal work, now published as Parts I and II. Professor Christian was one of the founding fathers of materials science and highly respected worldwide. The new edition of his book deserves a place on the bookshelf of every materials science and engineering department. Suitable thermal and mechanical treatments will produce extensive rearrangements of the atoms in metals and alloys, and corresponding marked variations in physical and chemical properties. This book describes how such changes in the atomic configuration are effected, and discusses the associated kinetic and crystallographic features. It deals with areas such as lattice geometry, point defects, dislocations, stacking faults, grain and interphase boundaries, solid solutions, diffusion, etc. The first part covers the general theory while the second part is concerned with descriptions of specific types of transformations.




Fundamentals of Aluminium Metallurgy


Book Description

Fundamentals of Aluminium Metallurgy: Recent Advances updates the very successful book Fundamentals of Aluminium Metallurgy. As the technologies related to casting and forming of aluminum components are rapidly improving, with new technologies generating alternative manufacturing methods that improve competitiveness, this book is a timely resource. Sections provide an overview of recent research breakthroughs, methods and techniques of advanced manufacture, including additive manufacturing and 3D printing, a comprehensive discussion of the status of metalcasting technologies, including sand casting, permanent mold casting, pressure diecastings and investment casting, and recent information on advanced wrought alloy development, including automotive bodysheet materials, amorphous glassy materials, and more. Target readership for the book includes PhD students and academics, the casting industry, and those interested in new industrial opportunities and advanced products. - Includes detailed and specific information on the processing of aluminum alloys, including additive manufacturing and advanced casting techniques - Written for a broad ranging readership, from academics, to those in the industry who need to know about the latest techniques for working with aluminum - Comprehensive, up-to-date coverage, with the most recent advances in the industry




Modern Physical Metallurgy and Materials Engineering


Book Description

For many years, various editions of Smallman's Modern Physical Metallurgy have served throughout the world as a standard undergraduate textbook on metals and alloys. In 1995, it was rewritten and enlarged to encompass the related subject of materials science and engineering and appeared under the title Metals & Materials: Science, Processes, Applications offering a comprehensive amount of a much wider range of engineering materials. Coverage ranged from pure elements to superalloys, from glasses to engineering ceramics, and from everyday plastics to in situ composites, Amongst other favourable reviews, Professor Bhadeshia of Cambridge University commented: "Given the amount of work that has obviously gone into this book and its extensive comments, it is very attractively priced. It is an excellent book to be recommend strongly for purchase by undergraduates in materials-related subjects, who should benefit greatly by owning a text containing so much knowledge."The book now includes new chapters on materials for sports equipment (golf, tennis, bicycles, skiing, etc.) and biomaterials (replacement joints, heart valves, tissue repair, etc.) - two of the most exciting and rewarding areas in current materials research and development. As in its predecessor, numerous examples are given of the ways in which knowledge of the relation between fine structure and properties has made it possible to optimise the service behaviour of traditional engineering materials and to develop completely new and exciting classes of materials. Special consideration is given to the crucial processing stage that enables materials to be produced as marketable commodities. Whilst attempting to produce a useful and relatively concise survey of key materials and their interrelationships, the authors have tried to make the subject accessible to a wide range of readers, to provide insights into specialised methods of examination and to convey the excitement of the atmosphere in which new materials are conceived and developed.







Solidification Processing


Book Description




Solidification


Book Description

Solidification is one of the oldest processes for producing useful implements and remains one of the most important modern commercial processes. This text describes the fundamentals of the technology in a coherent way, using consistent notation.







Quantitative Phase Field Modelling of Solidification


Book Description

This book presents a study of phase field modelling of solidification in metal alloy systems. It is divided in two main themes. The first half discusses several classes of quantitative multi-order parameter phase field models for multi-component alloy solidification. These are derived in grand potential ensemble, thus tracking solidification in alloys through the evolution of the chemical potentials of solute species rather than the more commonly used solute concentrations. The use of matched asymptotic analysis for making phase field models quantitative is also discussed at length, and derived in detail in order to make this somewhat abstract topic accessible to students. The second half of the book studies the application of phase field modelling to rapid solidification where solute trapping and interface undercooling follow highly non-equilibrium conditions. In this limit, matched asymptotic analysis is used to map phase field evolution equations onto the continuous growth model, which is generally accepted as a sharp-interface description of solidification at rapid solidification rates. This book will be of interest to graduate students and researchers in materials science and materials engineering. Key Features Presents a clear path to develop quantitative multi-phase and multi-component phase field models for solidification and other phase transformation kinetics Derives and discusses the quantitative nature of the model formulations through matched interface asymptotic analysis Explores a framework for quantitative treatment of rapid solidification to control solute trapping and solute drag dynamics